

1

This project was supported by APINIC foundation.

TECHNICAL REPORT
EXPERIMENT AND IMPROVE REINFORCEMENT LEARNING ALGORITHMS TO ENHANCE
ANOMALOUS NETWORK BEHAVIOUR DETECTION

SUMMARY

Cyber security is a significant research area because all of the operations based on government, military,

commercial, financial and civilians gather, process, and store tremendous volume of data on computers and

others. Cyber-attacks have imposed increasing threats and damages on our modern society. Network Intrusion

Detection System (NIDS) is one of the major techniques in preventing cyber-attacks occurred in network

traffic. Over the past decade, a lot of research work has been conducted to explore NIDS solutions. The

previous studies suggested that AI algorithms have promising potentials in developing effective solutions to

detect the growing attacks.

TeleMARS R&D team is committed to advancing AI-based methods, exploring realistic approaches to deploy

the research outcomes in real network environment, and supporting on-going research in wider community.

The key objectives of this project are to:

• Contribute to the development of NIDS to enhance cyber security capability.

• Contribute to research community in the subject of anomaly detection.

• Establish a practical collaboration framework to enable scientists and IT professionals from diverse

background to work together to continuously contribute to NIDS research on various aspects.

• Test and prove TeleMARS operation and technical frameworks, and the team capabilities.

• Inspire and enable the participation of broader research community in cyber security domain

supporting gender equality and inclusion.

This project was commenced in September 2020 and finalised in June 2021. The main activities included:

• Literature review and project design.

• Selection of publish datasets and machine learning methods.

• Data analysis and preparation.

• Machine learning model development and experiments.

• Establish evaluation pipelines to partially simulate real application environment.

• Model capability evaluation applying different datasets.

PROJECT IMPLEMENTATION

OVERVIEW

The expected research outcomes of this project include:

• the understanding in the capabilities of Reinforcement Learning method in cyber-attack detection;

• comparison of the performance of a number of popular machine learning (ML) models;

• an evaluation method and framework that can be deployed in real network environment;

• comparison of the robustness of various ML models when feature space changes; and

• a collaboration framework that supports researchers and professionals from various backgrounds.

The in-scope research work involved the following components to achieve the objectives.

• Selection of datasets and the ML models that show strong anomaly detection capability.

2

This project was supported by APINIC foundation.

• Design and develop various machine learning models using traditional machine learning experiment

approach, including

o Shallow Learning classification-based models;

o Neural Network Deep Learning models; and

o A novel Reinforcement Learning model.

• Experiment a novel evaluation method on the trained models.

• Experiment the evaluation of the trained model applying a separate dataset which has different

feature space from the training data.

A comprehensive literature review was conducted to refine the project designs including research dataset

selection, which is detailed in Project Implementation

Phase I section. Data analysis was conducted to refine the selection and the designs of learning algorithms.

This project selected two public datasets which were collected by different approaches and constructed with

different feature spaces. Based on the data analysis and literature review, a number of Shallow Learning and

Neural Network Deep Learning methods that were studied in previous research were selected to conduct the

comparison against a Reinforcement Learning method.

The models were designed using the selected methods including Reinforcement Learning method, and

experimented against the selected datasets. The performance of the models was measured against a set of

metrics to conduct comparison and analysis of their capabilities in developing NIDS applications.

Future research in real-time detection requires an effective evaluation approach to measure the overall

performance within an environment that simulates real network traffic. The scope of this project does not

include real network traffic data collection and construction. An evaluation method was designed to simulate

the detection process in real environment and test the consistency and stability of the trained models.

Meanwhile, this project established a collaboration framework providing supportive teamwork environment to

support the joint research effort. The collaboration framework aims to enable broader research and IT

communities to collaborate and contribute to the on-going research venture in the domain of NIDS

applications.

The research activities are carried out in three phases to deliver the above components.

PHASE I SELECTION OF DATASETS AND REFERENCE MODELS

Literature review has been conducted to analyse the previous studies in the field of cyber-attack detection to

understand the problems, the approaches studied, the outcomes, the potentials and challenges.

Data collection provides the source data of network traffic for detection model development and

implementation. Creating or collecting effective datasets is challenging as it demands designing realistic

environments that include wide diversity of normal and attack scenarios, and constructing a comprehensive

profile that involves all possible legitimate behaviours.

Real network traffic data collection and processing is excluded in the scope of this project. The public datasets

that were produced by networking experts are adopted to support the research work.

DATASET SELECTION

3

This project was supported by APINIC foundation.

The available public datasets can be classified as network traffic, electrical network-based, android app-based,

internet application-based, and IoT-based.

The table below shows a list of available public datasets. [4]

Public dataset Year of publish Number of times

cited by June

2019

DARPA 1998 1998 1069

KDD Cup 1999 1999 N/A

NSL-KDD 2009 1630

UNSW-NB15 2015 202

DEFCON 2000 12

CAIDAs 2017 18

CDX 2013 8

TWENTE 2014 222

CIC DoS 2017 18

CIC-IDS2017 2017 87

CSE-CIC-IDS2018 2018 N/A

ISCX 2012 453

ADFA2013 2013 147

LBNL 2016 7

ICS cyber attack 2015 124

IEEE 300-bus power test system N/A 171

Tor-nonTor 2017 18

URL 2016 7

MAWI 2011 182

VPN-nonVPN 2016 49

Android validation 2014 33

Android malware 2018 1

Bot-IoT 2018 2

CTU-13 2013 244

ISOT 2008 98

SSHCure 2014 37

Table 1 Available public dataset

Analysis was conducted on these datasets applying the following criteria:

• Network traffic data including those at routers and links.

• Completeness of network traffic profile including both benign and abnormal behaviours.

• Number of times cited.

• Methods of data collection and preparation.

4

This project was supported by APINIC foundation.

NSL-KDD and CIC-IDS2017 datasets were selected to conduct machine learning model designs and

experiments.

KDD CUP 1999 is considered benchmark data for assessment of intrusion detection systems. The data includes

four main categories of attacks that are Denialof-Service (DoS), user-to-root (U2R), Remote to Local Attack

(R2L) and Probing Attack. Also, there are three content features and thirty-eight numerical features in the

dataset. The features consist of basic features of individual TCP connections, content features within a

connection suggested by domain knowledge and traffic features computed using a two-second time window.

The NSL-KDD dataset is recommended to solve some of the inherent problems of the KDD’99 dataset.

Compared to the original KDD dataset, the NSL-KDD dataset has the following improvements: (1) it does not

include redundant records, (2) it does not include duplicate records, (3) the number of selected records is

organized as the percentage of records, and (4) the number of records is reasonable.

As NSL-KDD has been heavily used in the studies of machine learning methods, it is used in this project for a

benchmark comparison.

The Canadian Institute for Cybersecurity (CIC) conducted a number of projects aiming to overcome the

shortcomings of previous datasets, aiming to develop a systematic approach to generate diverse and

comprehensive benchmark dataset for intrusion detection based on the creation of user profiles which contain

abstract representations of events and behaviours seen on the network. Generating realistic background

traffic was the top priority in building this dataset. CIC has used the proposed B-Profile system to profile the

abstract behaviour of human interactions and generates naturalistic benign background traffic. For this

dataset, the abstract behaviour of 25 users based on the HTTP, HTTPS, FTP, SSH, and email protocols were

built. CIC-IDS2017 dataset comprises both benign behaviour and also details of new malware attacks: such as

Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet and DDoS. This dataset is

labelled based on the timestamp, source and destination IPs, source and destination ports, protocols and

attacks. A complete network topology was configured to collect this dataset which contains Modem, Firewall,

Switches, Routers, and nodes with different operating systems (Microsoft Windows (like Windows 10,

Windows 8, Windows 7, and Windows XP), Apple’s macOS iOS, and open-source operating system Linux).

The CICFlowMeter tool is used to extract 80 network flow features from the generated network traffic. The

flows are tagged using the timestamp, the source and destination ports and IP addresses, and protocol types.

It reproduced comprehensive network traffic conditions and categories of data at both router and application

level, providing relatively comprehensive network traffic profile for model training. It has been cited 87 times

in recent research work. By using this dataset, this research work could contribute to the research community

by adding meaningful reference data and/or lessons for any subsequent research work.

PROPOSED AI APPROACHES AND MODELS

There are two major IDS approach classes for building attack detection model: Signature IDS approach and

Anomaly IDS approach.

A Signature IDS monitors network traffic to match observed behaviours with attack signatures logged in a

database. It produces higher detection rates and lower false alarm rates for known attacks than other types,

but it cannot detect new or even variants of known attacks. This is a significant issue in terms of the computer

security required to defend against those attacks. Moreover, a huge effort is necessary to repeatedly update

its database that includes various rules for malicious activities, established by network security experts. To

address the drawbacks of signature IDS, anomaly IDS approaches have been heavily studied.

5

This project was supported by APINIC foundation.

An Anomaly IDS creates a normal profile and identifies any variations from it as a suspicious event. It can

identify known and zero-day attacks with less effort to construct its profile than a Signature IDS. Figure 1

summaries the major categories of anomaly detection approaches. [2]

Among these categories, both the classification-based shallow learning and deep learning methods have

shown promising results using existing public datasets. Based on the data analysis outcomes, the following

methods were selected to produce performance reference and comparison: Random Forest (RF), Support

Vector Machine (SVM), K Nearest Neighbour (KNN), Multi-Layer Perceptron Neural Network (MLP-NN), Long

Short-Term Memory Convolutional Neural Network (LSTM-CNN).

In recent literature, Reinforcement Learning method has been proposed in a few studies to explore how it can

improve the capability of deep neural network [8].

This project designed and experimented an Adversarial Reinforcement Learning (ARL) model to explore its

ability in detecting emerging attacks.

Figure 1 Anomaly Detection Approach Categories

PHASE II DESIGN AND EXPERIMENT VARIOUS MACHINE LEARNING MODELS

EXPERIMENT ENVIRONMENT:

The experiments were carried out in a cloud-based environment. Azure pipeline was used to setup DevOp

environment. The bidirectional traceability is established across requirements, stories, repositories, test cases

and test results. The environment allows multiple users to access the resources and conduct development

collaboratively.

DataOps pipelines were setup to apply various source data ingestion to the process of model training and

validation. Researchers can choose suitable DataOps pipeline for each experimentation.

6

This project was supported by APINIC foundation.

Experiment processes

The experiments were carried out through the following steps.

• Prepared the selected datasets NSL-KDD and CICIDS2017 respectively.

• Designed the machine learning models applying the selected methods and the respective dataset.

• Conducted model training and experiments using the prepared data.

• Designed an Adversarial Reinforcement Learning (ARL) model structure for CIC-IDS2017 dataset.

• Conducted ARL model training and experiments using the prepared CIC-IDS2017 data.

• Analysed the anomaly detection and category classification results.

A typical machine learning model development and experiment process is demonstrated in the diagram below.

This project applies the same process to conduct the work.

Figure 2 Model Training and Experiment Process

DATASET ANALYSIS AND PREPARATION

Data preparation is a significant step for machine learning methods. The network data extracted from network

traffic includes noisy or irrelevant information, missing or duplicated data values, which impact the

performance of detection model for detecting anomaly. In order to design and architect the models, the

datasets were carefully analysed so that the characters, the feature structures, and the distribution shapes

were understood. Suitable data cleansing and processing operations were designed and conducted on the

selected datasets respectively.

NSL-KDD Dataset

Data availability

7

This project was supported by APINIC foundation.

NSL-KDD, which is an updated version of KDD’99 dataset, is downloaded from

https://www.unb.ca/cic/datasets/nsl.html. 8 files are available in the dataset:

1. KDDTrain+.ARFF: The full NSL-KDD train set with binary labels in ARFF format

2. KDDTrain+.TXT: The full NSL-KDD train set including attack-type labels and difficulty level in CSV

format

3. KDDTrain+_20Percent.ARFF: A 20% subset of the KDDTrain+.arff file

4. KDDTrain+_20Percent.TXT: A 20% subset of the KDDTrain+.txt file

5. KDDTest+.ARFF: The full NSL-KDD test set with binary labels in ARFF format

6. KDDTest+.TXT: The full NSL-KDD test set including attack-type labels and difficulty level in CSV

format

7. KDDTest-21.ARFF: A subset of the KDDTest+.arff file which does not include records with difficulty

level of 21 out of 21

8. KDDTest-21.TXT: A subset of the KDDTest+.txt file which does not include records with difficulty

level of 21 out of 21

ARFF-formatted files include ‘attribute’ in their header, which are description of columns in the dataset. In this

analysis, KDDTrain+.ARFF and KDDTest+.ARFF

1) files are used as training and testing data, respectively.

Data description

There are 125,973 training records in the training data and 22,544 testing records in the testing data. In each

dataset, there are 42 columns, where the last column represents labels (‘normal’/’anomaly’) for the records.

41 attributes were recorded and their descriptions are listed in Appendix 1. List of all attributes included in

NSL-KDD data.

In training data, 67,343 records are labelled ‘normal’ and 58,630 records are ‘anomaly’, which shows it’s a

well-balanced dataset. In testing data, there are 12,833 ‘normal’ records and 9,711 ‘anomaly’ records.

Data Preparation

1. Encoding categorical data: Three columns: ‘protocol_type’, ‘service’ and ‘flag’ are categorical data with

more than 2 categories in each column. These categories are encoded by One Hot Encoding from Python in

training data and testing data, respectively. Due to the fact that fewer categories are available in testing data

for ‘service’ data, columns associated with these 6 missing categories are set to 0 in the testing data.

Associated original columns are then removed and replaced by these dummy columns.

2. Normalisation: Histograms of columns with numeric data are illustrated in Figure 3, where it is clear

that majority data in these columns are 0. In order to minimize the effect of absolute values to classification

model, training data are normalized to standardized data with mean 0 and standard deviation 1.

Testing data are normalized based on mean and standard deviation values estimated from original training

data.

8

This project was supported by APINIC foundation.

Figure 3 Histogram of numeric columns in NSL-KDD training dataset

CICIDS2017 DATASET

Data availability and description

CICIDS 2017 data consists of 8 data files collected from Monday to Friday in a week. In summary, 14 categories

are included in the data, which are

• BENIGN: 2,830,743 records,

• FTP-Patator: 7,938 records

• SSH-Patator: 5,897 records

• DoS Hulk: 231,073 records

• DoS GoldenEye 10,293 records

• DoS slowloris: 5,796 records

• DoS Slowhttptest: 5,499 records

• Heartbleed: 11 records

• Web Attack Brute Force: 1,507 records

• Web Attack XSS: 652 records

• Web Attack Sql Injection: 21 records

• Infiltration: 36 records

• Bot: 1,966 records

• PortScan: 158,930 records

• DdoS: 128,027 records

Details of the distributions of these records in each file are listed in the Table 2 below.

9

This project was supported by APINIC foundation.

File Name Category Number of Records

Monday-WorkingHours.pcap_ISCX.csv
Benign 529918

Tuesday-WorkingHours.pcap_ISCX.csv
Benign

FTP-Patator
SSH-Patator

432074
7938
5897

Wednesday-
WorkingHours.pcap_ISCX.csv

Benign
DoS Hulk

DoS GoldenEye
DoS slowloris

DoS Slowhttptest
Heartbleed

440031
231073
10293
5796
5499

11

Thursday-WorkingHours-Morning-
WebAttacks.pcap_ISCX.csv

Benign
Web Attack Brute Force

Web Attack XSS
Web Attack Sql Injection

168186
1507
652
21

Thursday-WorkingHours-Afternoon-
Infilteration.pcap_ISCX.csv

Benign
Infiltration

288566
36

Friday-WorkingHours-
Morning.pcap_ISCX.csv

Benign
Bot

189067
1966

Friday-WorkingHours-Afternoon-
PortScan.pcap_ISCX.csv

PortScan
Benign

158930
127537

Friday-WorkingHours-Afternoon-
DDos.pcap_ISCX.csv

DDoS
Benign

128027
97718

Table 2 CICIDS2017 data profile

Data Preparation

1. Sub dataset selection

The full CICIDS2017 dataset is very large in size which makes practical model training and testing very difficult.

In this work, we applied stratified random

sampling method to extract 20% of the full dataset. However, anomaly categories have a lot less records

compared with benign data. In particular, some

categories only have very small number of records. This may cause data imbalance. In order to resolve the

imbalance to support better learning capability, all

the records of anomalies were added to produce sub dataset.

2. Training and Testing data

Stratified sampling method was used to divide the sub dataset into 80% for training and 20% for testing.

10

This project was supported by APINIC foundation.

3. Handling missing value and columns with zeros

Two columns ‘Flow Bytes/S’ and ‘Flow Packets/s’ have missing values in them. These values are replaced by

their means in each group, respectively. Columns

'Bwd PSH Flags','Bwd URG Flags'. 'Fwd Avg Bytes/Bulk', 'Fwd Avg Packets/Bulk', 'Fwd Avg Bulk Rate', 'Bwd Avg

Bytes/Bulk','Bwd Avg Packets/Bulk' and 'Bwd

Avg Bulk Rate' have only 0s in them. They are therefore removed in the preparation step.

4. Data normalization

All features were normalized by MinMaxScaler from scikit package in Python. Training data and testing data

were normalized separately.

MODEL CONSTRUCTION

The machine learning models were developed to not only detect anomaly behaviours, but also identify the

categories of the anomaly behaviours.

Shallow Learning models

Random Forest (RF)

RF is an ensemble method which combines lots of individual decision trees, as illustrated in the Figure 4 below.

Each individual tree employs some of the features and spits out a class prediction. The class that receives the

most votes becomes RF model’s final prediction. Two RF models were developed using NSL-KDD and CIC-

IDS2017 datasets respectively.

Figure 4 Random Forest Algorithm Steps

Singular Vector Machine (SVM)

SVM works by finding out the separating hyperplane which maximizes the margin between two classes. A SVM

model was developed using NSL-KDD to provide comparison data against RF method. A non-linear soft-margin

classifier was adopted in this model.

K Nearest Neighbour (KNN)

11

This project was supported by APINIC foundation.

KNN is a non-parametric classification method among which an object is classified by a vote of its K nearest

neighbours. It is renowned for its classification abilities in high-dimensional problems. Minkowski Distance

calculation as the formular below was adopted in model construction. A KNN model was developed using CIC-

IDS2017 dataset.

Deep learning models

Multi-Layer Perceptron Neural Network (MLP-NN)

MLP-NN is a class of feedforward Artificial Neural Network (ANN). Our models comprise multiple hidden layers

of nonlinearly-activating neurons. Learning occurs in the neurons by changing connection weights after each

piece of data is processed, based on the amount of error in the output compared to the expected result. Two

MLP-NN models were developed using the NSL-KDD and CIC-IDS2017 datasets respectively.

The diagram Figure 5 illustrates the high-level architecture of a general Artificial Neural Network algorithm.

Convolutional Neural Network Long Short-Term Memory (CNN-LSTM)

The CNN-LSTM model developed in this project is composed of a convolution 1d layer (input), a LSTM layer, a

dropout layer and an output layer. It was trained with NSL-KDD dataset to compare with MLP-NN model.

Figure 5 Artificial Neural Network

Reinforcement Learning model

Adversarial Reinforcement Learning (ARL)

An ARL model was developed which includes a classifier agent and an environment agent, both of which are

Deep Q Networks (DQN) consisting of MLP-NN models with three hidden layers in the classifier agent and one

hidden layer in the environment agent. Each hidden layer has 100 neurons in it. An optimal Q-function was

adopted, which obeys the Bellman optimality equation:

The model works by training both agents at the same time, and iteratively rewards the classifier agent once a

correct classification is performed. The ARL model was trained and experimented using the CIC-IDS2017

dataset.

ARL Model Training

12

This project was supported by APINIC foundation.

During the process of model training, the environment agent used records from CIC-IDS2017 dataset to create

attacks while the classifier agent was rewarded when it correctly identified the category of an attack.

Figure 6 ARL model training - total reward and loss of two agents

Figure 6 shows the classifier agent improving its ability to defend the type of attack each successive episode

while the environment agent becomes more unsuccessful making an attack. The classifier and environment

agents exhibit expected behaviour of total reward converges to a value. The environment agent used a varied

type of attacks for each episode. Figure 7 shows the distribution of the attacks across all the categories in each

episode. The distribution shapes varied throughout the process.

13

This project was supported by APINIC foundation.

Figure 7 Distribution of attacks at different epoch levels

EXPERIMENT RESULTS

The key objective of the model development and experiments is to explore the suitability and potential of

Reinforcement Learning method in detecting network emerging attacks.

The models were trained and tested using traditional machine learning experiment approach.

Analysis and evaluation metrics

Parameters

True positive (TP): number of harmful applications correctly classified.

True negative (TN): number of benign applications correctly classified.

False positive (FP): number of benign applications misclassified as harmful. It is regarded as the main drawback

of classification methods.

False negative (FN): number of harmful applications misclassified as benign.

Performance metrics

Name Description

Accuracy (ACC) Percentage of correct predictions (positive and negative).
(TP + TN) / (TP + TN + FP + FN)

Precision Precision: percentage of correct positives over the total number of positives
identified. TP / (TP + FP)

Detection Rate (DR) The detection rates are evaluated using the Area Under the Curve (AUC) of the

receiver operating characteristics (ROC).

The detection latency is evaluated by measuring the mean computing time to

detect whether a data sample is an intrusion.

DR-attack = TP / (TP + FN)

Sensitivity

Sensitivity measures the proportion of attack profiles correctly identified.
TP / (TP + FN)

Specificity Specificity measures the percent of authentic profiles correctly classified, thus

providing insight as to the portion of the original authentic profiles that are used for

prediction.

F-measures From precision and recall, this parameter measures the accuracy of the method
2 * {(Precision * Sensitivity) / (Precision + Sensitivity)}

False Alarm Rate
(FAR)

False alarms are the benign instances incorrectly classified over the total number of
benign samples.
FP / TN + FP

False Negative and
Positive

False positives over the total number of positives identified
FP / TP + FP
False negative over the total number of positives identified
FN / FN + TN

Miss Rate

Harmful instances incorrectly classified over the total number of harmful samples
FN / (TP + FN)

14

This project was supported by APINIC foundation.

Error Rate

Incorrectly classified instances over the total
(FP + FN) / (TP + TN + FP +FN)

This project measures the performance of the developed machine learning models in two scenarios, 1) the

classification of each anomaly category, 2) the binary detection of anomalies from benign records. The

measurement was scaled between 0 to 1 when 1 was 100%.

Detection performance when using NSL-KDD dataset

The four models designed by Random Forest (RF), Support Vector Machine (SVM), Multi-Layer Perceptron

Neural Network (MLP-NN), and Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) methods

respectively were trained and tested using NSL-KDD dataset.

The key performance metrics were measured against the binary detection and listed in the table below.

Model Accuracy Precision Specificity Sensitivity F-measure

RF 0.79 0.97 0.97 0.68 0.80
SVM 0.79 0.93 0.93 0.69 0.79

MLP-NN 0.79 0.92 0.92 0.69 0.79
CNN-LSTM 0.79 0.95 0.95 0.68 0.80

Table 3 Binary detection performance - NSL-KDD

The results in this table showed the performance of these four models was very similar to each other, among

which RF model showed the best overall performance. There are rooms to improve the performance of these

models. For the purpose of providing benchmark comparison, these measures were sufficient to show the

effectiveness of these methods.

Detection results when using CIC-IDS2017 dataset

The four models designed by Random Forest (RF), K Nearest Neighbour (KNN), Multi-Layer Perceptron Neural

Network (MLP-NN), and Adversarial Reinforcement Learning (ARL) methods respectively were trained and

experimented using CIC-IDS2017 dataset.

The precision and F-measure of the four models classifying the fifteen anomaly categories were measured. The

results are presented in the following table.

Category KNN RF MLP-NN ARL Number

of cases

 Precision F1-score Precision F1-score Precision F1-score Precision F1-score

Benign 0.90 0.94 0.99 0.99 0.79 0.87 0.94 0.85 90924

Bot 0.92 0.73 0.78 0.41 1.00 0.04 0.02 0.04 393

DDoS 1.00 0.99 1.00 1.00 0.99 0.91 0.91 0.59 25606

DoS Goldeneye 0.99 0.96 1.00 0.98 0.91 0.33 0.49 0.58 2059

Dos Hulk 0.99 0.90 1.00 1.00 0.97 0.82 0.69 0.80 46215

Dos

SlowHTTPTest

0.90 0.94 0.99 0.96 0.97 0.12 0.25 0.39 1100

Dos SlowLoris 0.99 0.94 1.00 0.98 1.00 0.56 0.21 0.29 1159

FTP-Patator 1.00 1.00 1.00 1.00 0.00 0.00 0.66 0.79 1588

Heartbleed 1.00 0.67 1.00 0.67 0.00 0.00 0.00 0.00 2

15

This project was supported by APINIC foundation.

Infiltration 0.50 0.22 1.00 0.73 0.00 0.00 0.00 0.00 7

PortScan 0.97 0.97 1.00 1.00 0.91 0.94 0.93 0.95 31786

SSH-Patator 1.00 0.68 1.00 1.00 0.00 0.00 0.39 0.43 1180

Web attack

Brute force

0.79 0.59 0.74 0.73 0.00 0.00 0.00 0.00 301

Web attack SQL

injection

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4

Web attack XSS 0.43 0.13 0.26 0.32 0.00 0.00 0.00 0.00 130

Table 4 Anomaly category classification performance - CIC-IDS2017

From these results, it is obvious that the Shallow Learning RF and KNN models had better performance while

the overall performance of all the models was good.

The binary detection scenarios grouped the data to ‘benign’ and ‘anomaly’ only, where the ‘anomaly’ group

included all the categories not belonging to the ‘benign’ group. Table 5 illustrates the binary detection

performance measures of the four models.

It is clear that RF model had the best performance overall. KNN model also showed strong performance which

was similar to RF. The performance of both MLP-NN and ARL models under binary scenario was better than

classifying each category but less desired compared with RF and KNN models.

Metrics KNN RF MLP-NN ARL

Accuracy 0.95 1.00 0.87 0.87

Precision 0.91 0.99 0.79 0.96

Specificity 0.90 0.99 0.79 0.94

Sensitivity 0.99 1.00 0.97 0.84

F-measure 0.95 0.95 0.87 0.89

Detection Rate 0.99 1.00 0.97 0.84

False Alarm Rate 0.10 0.01 0.21 0.06

Miss Rate 0.01 0.00 0.03 0.16

Error Rate 0.05 0.00 0.13 0.13

False Positive Rate 0.09 0.01 0.21 0.04

False Negative Rate 0.01 0.00 0.03 0.23

Table 5 Binary detection performance CIC-IDS2017

16

This project was supported by APINIC foundation.

Meanwhile, the feature importance was measured when developing the RF model. The following Figure 8

includes the 20 most important features that RF model considered in its decision-making process. It shows the

‘Packet Length Variance’ and ‘Packet length Std’ were two most important features.

Figure 8 Gini feature importance - RF model

There were two models developed by RF method using two different datasets respectively. The performance

of these two models is compared in the Table 6 below.

Dataset Accuracy Precision Specificity Sensitivity F-measure

NSL-KDD 0.79 0.97 0.97 0.68 0.80

CIC-IDS2017 1.00 0.99 0.99 1.00 0.95

Table 6 RF model performance against the two datasets

There were two models developed by MLP-NN method using two different datasets respectively. The

performance of these two models is compared in the Table 7 below.

Dataset Accuracy Precision Specificity Sensitivity F-measure

NSL-KDD 0.79 0.92 0.92 0.69 0.79

CIC-IDS2017 0.87 0.96 0.94 0.84 0.89

Table 7 MLP-NN model performance against the two datasets

Both RF and MLP-NN models showed obvious variations of performance measures between the two datasets.

This indicates these machine learning models are sensitive to different data structure.

PHASE III EXPERIMENT A NOVEL EVALUATION METHOD ON THE TRAINED MODELS

EVALUATION APPROACH

The purpose of the evaluation process conducted in this project beyond the traditional ML model experiment

processes is to explore an approach which simulates the real environment where a ML model is implemented

17

This project was supported by APINIC foundation.

to detect network-attacks in real-time. So that the evaluation results can indicate the effectiveness of a ML

model in real-time detection.

In real environments the network traffic data streams across network components. However, processing

streaming data in real-time as part of system operation can be expensive at the risks of degrading the system

performance. The proposed evaluation method assumes the network traffic data and system logs can be

captured in batches using the similar method as how the CICIDS2017 was constructed [19]. The network traffic

can be extracted and constructed at a certain interval.

An evaluation pipeline was established in a cloud-based environment which allows a simulator to send

continuous batches to pipeline endpoints at a configurable interval. The data flows automatically trigger the

data preparation processes and execute the trained models. The evaluation pipeline can be deployed in any

real network environments. Figure 9 demonstrates the concept of the evaluation pipeline.

Limitation

 Within the scope of this project, the real-time network traffic is not collected or constructed. A public dataset

that was produced with relatively comprehensive profile and emerging attacks is to be applied. The continuous

batch files were generated by applying random sampling method on the adopted public datasets.

Figure 9 AI anomaly detection model evaluation pipeline

Evaluation Scenario 1

In order to understand how well ML models works in real environments, this evaluation scenario focuses on

implementing the trained ML models to detect anomalies in each batch file which has varieties of anomaly

density and category distribution.

This evaluation scenario measures the classification and detection performance of the models across

continuous small network data batches. The results are compared across the batches to observe the

performance consistency and stability.

Evaluation Scenario 2

18

This project was supported by APINIC foundation.

This evaluation scenario focuses on the comparison of the robustness of the trained ML models when

encountering changes or noise in feature space. Ideally, this evaluation could be conducted with real network

data noise and uncertainties. However, real network data construction is out of the scope of this project.

The evaluation scenario 2 applied one dataset for training and a different dataset for evaluation. Though this

approach imposes the risk of causing the ML models ineffective, it may still compare the different robustness

in various models.

Evaluation Datasets

Running anomaly detection models over real labelled network traces with a comprehensive and extensive set

of intrusions and abnormal behaviour is the most idealistic methodology for testing and evaluation. This itself

is a significant challenge. As network behaviours and patterns change and intrusions evolve, it has very much

become necessary to move away from static and one-time datasets towards more dynamically generated

datasets, which not only reflect the traffic compositions and intrusions of that time, but are also modifiable,

extensible, and reproducible. Within the scope of this project, we applied CICIDS2017 dataset, which is close to

realistic network data with zero-attacks, to simulate the realistic network data for evaluation.

Other than CICIDS2017 dataset, another dataset CES-CICIDS2018 was produced by the same organisation -

Canadian Institute for Cybersecurity (CIC). This dataset used the notion of profiles to generate datasets in a

systematic manner, which contains detailed descriptions of intrusions and abstract distribution models for

applications, protocols, or lower-level network entities. Both the CICIDS2017 and CSE-CICIDS2018 datasets

include seven different attack scenarios: Brute-force, Heartbleed, Botnet, DoS, DDoS, Web attacks, and

infiltration of the network from inside. The datasets include the captures network traffic and system logs of

each machine, along with 80 features extracted from the captured traffic using CICFlowMeter [19].

At the first glance, these two datasets have very similar feature structure. However, when we analysed in more

depth on the constructed data, CESCICIDS2018 dataset has different feature and anomaly distribution shape

compared with the CICIDS2017 dataset. The detailed analysis of the data extraction and construction

processes of these two datasets are not included in the scope of this project.

This project used CICIDS2017 dataset to conduct the evaluation scenario 1, to evaluate the consistency and

stability of the trained ML models in cloud-based evaluation pipelines processing the randomly sampled batch

flows. CES-CICIDS2018 dataset was adopted to measure the robustness of the four ML models trained by

CICIDS2017 dataset to explore the capabilities of these models when facing feature and anomaly changes.

Evaluation Process

The steps of experimenting the evaluation method and pipelines were as the following:

1. Applied random sampling method on CICIDS2017 and CSE-CICIDS2018 data which is outside of the

model training data to generate the network data batch files. Each batch file contains 20,000 records.

2. Built a simulator to send the batch network data files at a configurable interval to the evaluation

pipeline endpoints.

3. Implemented an evaluation pipeline on the TeleMARS cloud-based platform to automatically

1. receive the incoming batch flows;

2. prepare the incoming batch files to get ready to feed the models; and

19

This project was supported by APINIC foundation.

3. execute the trained machine learning models on the prepared data to detect anomalies in

each batch

EVALUATION RESULTS

Performance consistency and stability

The tables below show the performance measures of classifying anomaly categories over randomly picked

three batch files, as well as the binary detection performance measures of each model.

Bath file 1

Category KNN RF MLP-NN ARL Number

of cases

 Precisio

n

F1-score Precisio

n

F1-score Precisio

n

F1-score Precisio

n

F1-score

Benign 1.00 0.99 1.00 1.00 1.00 0.99 0.99 0.92 8978

Bot 0.88 0.92 0.93 0.91 0.84 0.76 0.11 0.19 46

DDoS 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 2549

DoS

Goldeneye

1.00 1.00 0.99 1.00 1.00 1.00 0.78 0.87 193

Dos Hulk 1.00 1.00 1.00 1.00 0.99 1.00 0.95 0.96 4560

Dos

SlowHTTPTe

st

0.98 0.99 1.00 1.00 0.98 0.98 0.68 0.80 127

DOS

SlowLoris

0.99 1.00 1.00 1.00 0.97 0.98 0.51 0.67 116

PortScan 0.96 0.98 1.00 1.00 0.98 0.99 0.94 0.96 3141

Brute force 0.68 0.75 0.82 0.78 0.78 0.88 0.01 0.02 36

Web attack

XSS

0.30 0.30 0.26 0.29 1.00 0.18 0.10 0.18 10

Table 8 Classification of each category in batch file 1

Metrics KNN RF MLP-NN ARL

Accuracy 0.99 1.00 0.99 0.93

Precision 1.00 1.00 1.00 0.99

Specificity 1.00 1.00 1.00 0.90

Sensitivity 0.99 1.00 0.99 0.90

F-measure 0.99 1.00 0.99 0.94

Detection Rate 0.99 1.00 0.99 0.90

False Alarm Rate 0.00 0.00 0.00 0.01

20

This project was supported by APINIC foundation.

Miss Rate 0.01 0.00 0.01 0.01

Error Rate 0.01 0.00 0.01 0.07

False Positive Rate 0.00 0.00 0.00 0.01

False Negative Rate 0.02 0.00 0.01 0.14

Table 9 Binary performance measures for batch file 1

Batch file 2

Category KNN RF MLP-NN ARL Number

of cases

 Precisio

n

F1-score Precisio

n

F1-score Precisio

n

F1-score Precisio

n

F1-score

Benign 1.00 0.99 1.00 1.00 1.00 0.99 0.99 0.92 9007

Bot 0.97 0.93 1.00 0.94 1.00 0.85 0.08 0.15 38

DDoS 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 2500

DoS

Goldeneye

0.99 0.99 1.00 1.00 0.99 0.99 0.82 0.89 216

Dos Hulk 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.96 4530

Dos

SlowHTTPTe

st

1.00 1.00 1.00 1.00 0.99 0.99 0.74 0.84 124

DOS

SlowLoris

0.99 1.00 1.00 1.00 0.98 0.98 0.57 0.72 127

Infiltration 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1

PortScan 0.97 0.98 1.00 1.00 0.98 0.99 0.94 0.96 3136

Brute force 0.57 0.67 0.77 0.78 0.63 0.77 0.07 0.1 34

SQL

injection

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1

Web attack

XSS

0.21 0.19 0.53 0.50 0.0 0.0 0.16 0.28 17

Table 10 Classification of each category in batch file 2

Metrics KNN RF MLP-NN ARL

Accuracy 0.99 1.00 1.00 0.93

Precision 1.00 1.00 1.00 0.99

Specificity 1.00 1.00 1.00 0.99

Sensitivity 0.99 1.00 0.99 0.90

F-measure 0.99 1.00 1.00 0.94

Detection Rate 0.99 1.00 0.99 0.90

21

This project was supported by APINIC foundation.

False Alarm Rate 0.00 0.00 0.00 0.01

Miss Rate 0.01 0.00 0.01 0.10

Error Rate 0.01 0.00 0.00 0.07

False Positive Rate 0.00 0.00 0.00 0.01

False Negative Rate 0.01 0.00 0.01 0.13

Table 11 Binary performance measures for batch file 2

Batch file 3

Category KNN RF MLP-NN ARL Number

of cases

 Precisio

n

F1-score Precisio

n

F1-score Precisio

n

F1-score Precisio

n

F1-score

Benign 1.00 0.99 1.00 1.00 1.00 0.99 0.99 0.92 8929

Bot 0.86 0.91 0.91 0.93 0.85 0.77 0.08 0.15 32

DDoS 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 2556

DoS

Goldeneye

0.98 0.99 0.99 0.99 1.00 0.99 0.76 0.86 218

Dos Hulk 1.00 1.00 1.00 1.00 0.99 1.00 0.96 0.96 4589

Dos

SlowHTTPTe

st

0.99 1.00 0.98 0.99 1.00 1.00 0.73 0.83 106

DOS

SlowLoris

0.99 0.97 0.99 0.98 0.97 0.97 0.55 0.69 117

PortScan 0.96 0.98 1.00 1.00 0.98 0.99 0.93 0.96 3148

Brute force 0.75 0.81 0.78 0.72 0.78 0.87 0.04 0.06 37

Web attack

XSS

0.27 0.30 0.14 0.17 0.0 0.0 0.10 0.18 9

Table 12 Classification of each category in batch file 3

Metrics KNN RF MLP-NN ARL

Accuracy 0.99 1.00 0.99 0.93

Precision 1.00 1.00 1.00 0.99

Specificity 1.00 1.00 1.00 0.99

Sensitivity 0.99 1.00 0.99 0.90

F-measure 0.99 1.00 0.99 0.94

Detection Rate 0.99 1.00 0.99 0.90

False Alarm Rate 0.00 0.00 0.00 0.01

Miss Rate 0.01 0.00 0.01 0.10

22

This project was supported by APINIC foundation.

Error Rate 0.01 0.00 0.01 0.07

False Positive Rate 0.00 0.00 0.00 0.01

False Negative Rate 0.02 0.00 0.01 0.14

Table 13 Binary performance measures for batch file 3

Processing time

The table below records the pipeline data preparation time and model processing time of running a model on

a single batch file. The results are compared among the four models over four randomly picked batches.

Model Batch file no. Pipeline data preparation

duration (mm:ss)

Model processing duration

(mm:ss)

RF 1 00:26 00:01

KNN 1 00:17 08:55

MPL-NN 1 00:19 00:02

ARL 1 00:17 00:02

RF 2 00:18 00:01

KNN 2 00:32 08:33

MPL-NN 2 00:42 00:01

ARL 2 00:16 00:02

RF 3 00:20 00:01

KNN 3 00:17 08:33

MPL-NN 3 00:22 00:01

ARL 3 00:27 00:02

RF 4 00:27 00:01

KNN 4 00:18 08:18

MPL-NN 4 00:30 00:01

ARL 4 00:43 00:01

Table 14 Evaluation processing time

Robustness of the ML models

The table below compares the binary detection performance across the four models when sending the batch

files generated from CES-CICIDS2018 data through the evaluation pipeline.

Metrics KNN RF MLP-NN ARL

Accuracy 0.53 0.35 0.64 0.60

Precision 0.38 0.14 0.53 0.57

Specificity 0.35 0.28 0.43 0.36

Sensitivity 0.94 0.84 0.98 0.83

F-measure 0.54 0.24 0.68 0.67

Detection Rate 0.94 0.84 0.98 0.83

False Alarm Rate 0.65 0.72 0.57 0.64

23

This project was supported by APINIC foundation.

Miss Rate 0.06 0.16 0.02 0.17

Error Rate 0.47 0.65 0.36 0.40

False Positive Rate 0.63 0.86 0.47 0.43

False Negative Rate 0.07 0.07 0.03 0.32

Table 15 Binary detection performance measures for batch file from CES-CIC-IDS2018 data

FINDINGS

OBSERVATION SUMMARY

The performance metrics of RF and MLP-NN models against the two datasets were compared in "Table 6 RF

model performance against the two datasets" and "Table 7 MLP-NN model performance against the two

datasets". There are obvious variations of performance measures between the two datasets while the overall

performance of anomaly detection is good.

The binary detection performance results recorded in "Table 3 Binary detection performance - NSL-KDD" and

"Table 5 Binary detection performance - CICIDS2017" showed that the Shallow Learning models such as RF and

KNN performed stronger than the MLP-NN and ARL models. RF model had the best overall performance in all

the experiments.

The results of the anomaly category classification performance in "Table 4 Anomaly category classification

performance" showed the Shallow Learning RF and KNN models were more effective in classifying the anomaly

categories with small number of records.

The evaluation results recorded in the tables from Table 8 to Table 13 were consistent cross three randomly

selected batch files. There were insignificant fluctuations in the results of classification of a couple of

categories which have small number of records. This is expected behaviour of ML models. The results of binary

detection performance were highly consistent.

Table 15 shows the models trained with CICIDS2017 data performed poorly in detecting the anomalies in CES-

CIC-IDS2018 data. MPL-NN model had better overall performance.

FINDINGS

1. The Shallow Learning RF model showed the best overall performance in detecting emerging attacks

using traditional machine learning experiment approach, in particular stronger in classifying the

anomaly categories that have only small number of records. KNN model shows similar strong

capabilities.

2. The Reinforcement Learning ARL model had good performance but did not show any advantage over

other models. However, there are rooms for Deep Learning and Reinforcement Learning models to

improve their prediction accuracy and detection sensitivity. Neural Network architecture could be further

adapted by modifying the layers, the number of neurons or hyperparameters in each layer, and the

dependencies between the neurons and the layers. The architecture reconstruction has chance to lead to

the improvements of anomaly detection performance.

24

This project was supported by APINIC foundation.

3. The differences of performance between the model experiments using NSL-KDD dataset and CIC-

IDS2017 dataset respectively showed that ML models are sensitive to data structure.

4. The evaluation results proved the detection performance of the ML models stay consistent and stable

when data volume, anomaly density and category distribution change.

5. The evaluation method and the pipelines can be applied to support future real-time detection research.

6. The RF, MPL-NN and ARL models were highly efficient in execution time and resource balance when

processing small batch files. However, KNN consumed a lot larger resource and took significantly longer

processing time. This indicates the implementation of KNN models in real network environment may be

expensive.

7. When the testing data feature space is different from the training dataset, ML models do not perform

well in general. So that the ML methods are not effective in this kind of situations.

8. The MPL-NN model showed relatively better robustness in overall detection performance. This indicates

that Neural Network method which is regression based is more resilient in dealing with changes in feature

space. This method could be adopted to add robustness into anomaly detection models in real network

environment.

LESSONS LEARNT AND DISCUSSIONS

The organisations who might benefit from the findings and the lessons learnt include universities, research

institutions, network operators, internet or cloud service providers, the organisations or businesses operating

in cybersecurity domain. The findings of this project can be used by these organisations to determine their

research plan, design research projects, assess cybersecurity solutions, or determine their technology

transformation strategy.

Lessons Learnt

• During the process of the project implementation, we have learnt that the strong collaboration

between the subject matter experts and data scientists is critical to develop effective and practical AI-

based solutions. In the domain of cybersecurity, it is important that cybersecurity experts, network

engineers and data scientists work closely together.

• It is worth spending more time on data analysis at all levels including physical layer, raw digital data,

processed data, and data in constructed feature space to make sure the structure and characters of

data is fully understood. This is critical for ML model development.

• It is also important to control the quality of each step of data processing which impacts the quality of

the models.

Next step research problems

This research has proved that the Shallow Learning classification methods are highly effective in anomaly

detection using the traditional machine learning experiment approach. The insignificant variations among the

performance measures do not indicate the anomaly detection effectiveness in real network environment.

Further performance improvement using traditional machine learning experiment approach is not the focus of

future research effort. Instead, the real-time detection should be studied on multiple aspects. The real-time

detection related problems include the following:

25

This project was supported by APINIC foundation.

• training data construction for a specific network environment;

• improvement of the robustness of anomaly detection model;

• dynamic evaluation mechanism;

• dynamic model training, improvement and deployment; and

• lightweight model architecture.

Challenges

However, there are a number of challenges in this process.

1. Firstly, the training data construction requires significant effort from subject matter experts such as

cybersecurity engineers and network engineers to work on detailed data analysis to capture and identify

comprehensive network behaviours. The subject matter experts need to work closely with data scientists to

work out the best way to structure data.

2. Extracting and constructing raw network data into the defined structure in real-time may increase risks in

operation performance.

3. The constructed real-time network data will still contain some noise. This requires the ML anomaly

detection models to be more robust to remain effective in real environments.

4. The network user behaviours and applications are growing and changing rapidly.

5. The network topology and architecture may change overtime. This may introduce significant changes in

network data profile.

6. The cyber-attacks are continuously evolving. A mechanism that promptly identifies any emerging attacks is

to be part of the detection strategy to ensure the ML models are up-to-date.

Based on what we have learnt through this project, TeleMARS will establish collaboration with research

partners to continue the research in real-time anomaly detection to develop solutions that is practical in real

network environment.

BIBLIOGRAPHY

1. Survey of intrusion detection systems: techniques, datasets and challenges; Ansam Khraisat*, Iqbal

Gondal, Peter Vamplew and Joarder Kamruzzaman; Khraisat et al. Cybersecurity (2019) 2:20;

https://doi.org/10.1186/s42400-019-0038-7

2. A holistic review of Network Anomaly Detection Systems: A comprehensive survey; Nour Moustafa,

Jiankun Hua, Jill Slayb

3. A study on Anomaly Detection GAN-based methods on image data; Emanuel H. Silva1, Johannes V.

Lochter

4. Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study;

Mohamed Amine Ferrag a , ∗, Leandros Maglaras b , Sotiris Moschoyiannis c , Helge Janicke b;

Department of Computer Science, Guelma University, Guelma 240 0 0, Algeria b School of Computer Science and

Informatics, De Montfort University, Leicester U.K. c Department of Computer Science, University of Surrey, U.K.

5. A detailed analysis of the KDD CUP 99 dataset, http://refhub.elsevier.com/S2214-2126(19)30504-

6/sbref0070

6. Fraley, James B., and James Cannady. "The promise of machine learning in cybersecurity."

SoutheastCon, 2017. IEEE, 2017.

https://doi.org/10.1186/s42400-019-0038-7
http://refhub.elsevier.com/S2214-2126(19)30504-6/sbref0070
http://refhub.elsevier.com/S2214-2126(19)30504-6/sbref0070

26

This project was supported by APINIC foundation.

7. I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, "Toward generating a new intrusion detection

dataset and intrusion traffic characterization," in ICISSP, 2018, pp. 108–116

8. Chika Yinka-Banjo, Ogban-Asuquo Ugot, “A review of generative adversarial networks and its

application in cybersecurity” Artificial Intelligence Review (2020) 53:1721–1736

9. Runa Bhaumik, Bamshad Mobasher and Robin Burke1, “A Clustering Approach to Unsupervised Attack

Detection in Collaborative Recommender Systems”

10. Minghui Gao, Li Ma, Heng Liu, Zhijun Zhang, Zhiyan Ning and Jian Xu, “Malicious Network Traffic

Detection Based on Deep Neural Networks and Association Analysis” Sensors 2020, 20, 1452

11. Kiran, B. R., Thomas, D. M., and Parakkal, R. (2018). An overview of deep learning based methods for

pervised and semi-supervised anomaly detection in videos. arXiv e-prints, page arXiv:1801.03149.

12. Kwon, D., Kim, H., Kim, J., C. Suh, S., Kim, I., and Kim, K. (2017). A survey of deep learning-based

network anomaly detection. Cluster Computing.

13. Perera, P., Nallapati, R., and Xiang, B. (2019). OCGAN: One-class Novelty Detection

14. Using GANs with Constrained Latent Representations. arXiv e-prints, page arXiv:1903.08550.

15. Phuc Ngo, C., Aristo Winarto, A., Kou Khor Li, C., Park, S., Akram, F., and Lee, H. K. (2019). Fence GAN:

Towards Better Anomaly Detection. arXiv e-prints, page arXiv:1904.01209.

16. Abusitta, A.; Bellaiche, M.; Dagenais, M.; Halabi, T. A deep learning approach for proactive multi-cloud

cooperative intrusion detection system. Future Gener. Comput. Syst. 2019, 98, 308–318.

17. Podgorelec, B.; Turkanovic, M.; Karakatic, S. A Machine Learning-Based Method for Automated

Blockchain Transaction Signing Including Personalized Anomaly Detection. Sensors 2020, 20, 147.

18. Aechan Kim, Mohyun Park, AND Dong Hoon LEE, AI-IDS: Application of Deep Learning to Real-Time

Web Intrusion Detection. Special Selection on Scalable Deep Learning for Big Data, IEEE Access

VOLUME 8, 2020

19. Canadian Institute for Cybersecurity, Datasets https://www.unb.ca/cic/datasets/

20. Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, “Toward Generating a New Intrusion

Detection Dataset and Intrusion Traffic Characterization”, 4th International Conference on

Information Systems Security and Privacy (ICISSP), Portugal, January 2018

APPENDIX

APPENDIX 1. LIST OF ALL ATTRIBUTES INCLUDED IN NSL -KDD DATA

Attribute No Attribute Name Description Sample Data

1 Duration Length of time duration of the connection 0

2 Protocol_type Protocol used in the connection Tcp

3 Service Destination network service used ftp_data

4 Flag Status of the connection –Normal or Error SF

5 Src_bytes Number of data bytes transferred from source to

destination in single connection

491

6 Dst_bytes Number of data bytes transferred from

destination to source in single connection

0

7 Land if source and destination IP addresses and port

numbers are equal then this variable takes value

1 else 0

0

https://www.unb.ca/cic/datasets/

27

This project was supported by APINIC foundation.

8 Wrong_fragment Total number of wrong fragments in this

connection

0

9 Urgent Number of urgent packets in this connection.

Urgent packets are packets with the urgent bit

activated

0

10 Hot Number of “hot‟ indicators in the content such

as: entering a system

0

11 Num_failed_logins Count of failed login attempts 0

12 Logged_in Login Status : 1 if successfully logged in; 0

otherwise

0

13 Num_compromised Number of ‘’compromised'' conditions 0

14 Root_shell 1 if root shell is obtained; 0 otherwise 0

15 Su_attempted 1 if ``su root'' command attempted or used; 0

otherwise

0

16 Num_root Number of ``root'' accesses or number of

operations performed as a root in the connection

0

17 Num_file_creations Number of file creation operations in the

connection

0

18 Num_shells Number of shell prompts 0

19 Num_access_files Number of operations on access control files 0

20 Num_outbound_cmds Numberof outbound commands in an ftp session 0

21 Is_hot_login 1 if the login belongs to the ``hot'' list i.e. root or admin;

else 0

22 Is_guest_login 1 if the login is a ``guest'' login; 0 otherwise 0

23 Count Number of connections to the same destination

host as the current connection in the past two

2

24 Srv_count Number of connections to the same service (port

number) as the current connection in the past

two seconds

2

25 Serror_rate The percentage of connections that have

activated the flag (4) s0 s1 s2 or s3 among the

connections aggregated in count (23)

0

26 Srv_serror_rate The percentage of connections that have

activated the flag (4) s0 s1 s2 or s3 among the

connections aggregated in srv_count (24)

0

27 Rerror_rate The percentage of connections that have

activated the flag (4) REJ among the connections

aggregated in count (23)

0

28

This project was supported by APINIC foundation.

28 Srv_rerror_rate The percentage of connections that have

activated the flag (4) REJ among the connections

aggregated in srv_count (24)

0

29 Same_srv_rate The percentage of connections that were to the

same service among the connections aggregated

in count (23)

1

30 Diff_srv_rate The percentage of connections that were to

different services among the connections

aggregated in count (23)

0

31 Srv_diff_host_rate The percentage of connections that were to

different destination machines among the

connections aggregated in srv_count (24)

0

32 Dst_host_count Number of connections having the same

destination host IP address

150

33 Dst_host_srv_count Number of connections having the same port

number

25

34 Dst_host_same_srv_rat

e

The percentage of connections that were to the

same service among the connections aggregated

in dst_host_count (32)

0.17

35 Dst_host_diff_srv_rate The percentage of connections that were to

different services among the connections

aggregated in dst_host_count (32)

0.03

36 Dst_host_same_src_por

t_rate

The percentage of connections that were to the

same source port among the connections

aggregated in dst_host_srv_count (33)

0.17

37 Dst_host_srv_diff_host

_rate

The percentage of connections that were to

different destination machines among the

connections aggregated in

dst_host_srv_count(33)

0

38 Dst_host_serror_rate The percentage of connections that have

activated the flag (4) s0 s1 s2 or s3 among the

connections aggregated in dst_host_count (32)

0

39 Dst_host_srv_serror_ra

te

The percent of connections that have activated

the flag (4) s0 s1 s2 or s3 among the connections

aggregated in dst_host_srv_count (33)

0

40 Dst_host_rerror_rate The percentage of connections that have

activated the flag (4) REJ among the connections

aggregated in dst_host_count (32)

0.05

