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TECHNICAL REPORT 
EXPERIMENT AND IMPROVE REINFORCEMENT LEARNING ALGORITHMS TO ENHANCE 
ANOMALOUS NETWORK BEHAVIOUR DETECTION 

SUMMARY 

Cyber security is a significant research area because all of the operations based on government, military, 

commercial, financial and civilians gather, process, and store tremendous volume of data on computers and 

others. Cyber-attacks have imposed increasing threats and damages on our modern society. Network Intrusion 

Detection System (NIDS) is one of the major techniques in preventing cyber-attacks occurred in network 

traffic. Over the past decade, a lot of research work has been conducted to explore NIDS solutions. The 

previous studies suggested that AI algorithms have promising potentials in developing effective solutions to 

detect the growing attacks. 

 

TeleMARS R&D team is committed to advancing AI-based methods, exploring realistic approaches to deploy 

the research outcomes in real network environment, and supporting on-going research in wider community. 

The key objectives of this project are to: 

 

• Contribute to the development of NIDS to enhance cyber security capability. 

• Contribute to research community in the subject of anomaly detection. 

• Establish a practical collaboration framework to enable scientists and IT professionals from diverse 

background to work together to continuously contribute to NIDS research on various aspects. 

• Test and prove TeleMARS operation and technical frameworks, and the team capabilities. 

• Inspire and enable the participation of broader research community in cyber security domain 

supporting gender equality and inclusion. 

This project was commenced in September 2020 and finalised in June 2021. The main activities included: 

• Literature review and project design. 

• Selection of publish datasets and machine learning methods. 

• Data analysis and preparation. 

• Machine learning model development and experiments. 

• Establish evaluation pipelines to partially simulate real application environment. 

• Model capability evaluation applying different datasets. 

PROJECT IMPLEMENTATION 

OVERVIEW 

The expected research outcomes of this project include: 

• the understanding in the capabilities of Reinforcement Learning method in cyber-attack detection; 

• comparison of the performance of a number of popular machine learning (ML) models; 

• an evaluation method and framework that can be deployed in real network environment; 

• comparison of the robustness of various ML models when feature space changes; and 

• a collaboration framework that supports researchers and professionals from various backgrounds. 

The in-scope research work involved the following components to achieve the objectives. 

• Selection of datasets and the ML models that show strong anomaly detection capability. 
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• Design and develop various machine learning models using traditional machine learning experiment 

approach, including 

o Shallow Learning classification-based models; 

o Neural Network Deep Learning models; and 

o A novel Reinforcement Learning model. 

• Experiment a novel evaluation method on the trained models. 

• Experiment the evaluation of the trained model applying a separate dataset which has different 

feature space from the training data. 

A comprehensive literature review was conducted to refine the project designs including research dataset 

selection, which is detailed in Project Implementation 

Phase I section. Data analysis was conducted to refine the selection and the designs of learning algorithms. 

 

This project selected two public datasets which were collected by different approaches and constructed with 

different feature spaces. Based on the data analysis and literature review, a number of Shallow Learning and 

Neural Network Deep Learning methods that were studied in previous research were selected to conduct the 

comparison against a Reinforcement Learning method. 

 

The models were designed using the selected methods including Reinforcement Learning method, and 

experimented against the selected datasets. The performance of the models was measured against a set of 

metrics to conduct comparison and analysis of their capabilities in developing NIDS applications. 

 

Future research in real-time detection requires an effective evaluation approach to measure the overall 

performance within an environment that simulates real network traffic. The scope of this project does not 

include real network traffic data collection and construction. An evaluation method was designed to simulate 

the detection process in real environment and test the consistency and stability of the trained models. 

 

Meanwhile, this project established a collaboration framework providing supportive teamwork environment to 

support the joint research effort. The collaboration framework aims to enable broader research and IT 

communities to collaborate and contribute to the on-going research venture in the domain of NIDS 

applications. 

 

The research activities are carried out in three phases to deliver the above components. 

PHASE I  SELECTION OF DATASETS AND REFERENCE MODELS 

Literature review has been conducted to analyse the previous studies in the field of cyber-attack detection to 

understand the problems, the approaches studied, the outcomes, the potentials and challenges. 

Data collection provides the source data of network traffic for detection model development and 

implementation. Creating or collecting effective datasets is challenging as it demands designing realistic 

environments that include wide diversity of normal and attack scenarios, and constructing a comprehensive 

profile that involves all possible legitimate behaviours. 

Real network traffic data collection and processing is excluded in the scope of this project. The public datasets 

that were produced by networking experts are adopted to support the research work. 

DATASET SELECTION 
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The available public datasets can be classified as network traffic, electrical network-based, android app-based, 

internet application-based, and IoT-based.  

The table below shows a list of available public datasets. [4] 

Public dataset Year of publish Number of times 

cited by June 

2019 

DARPA 1998 1998 1069 

KDD Cup 1999 1999 N/A 

NSL-KDD 2009 1630 

UNSW-NB15 2015 202 

DEFCON  2000 12 

CAIDAs 2017 18 

CDX  2013 8 

TWENTE  2014 222 

CIC DoS  2017 18 

CIC-IDS2017  2017 87 

CSE-CIC-IDS2018  2018 N/A 

ISCX  2012 453 

ADFA2013  2013 147 

LBNL  2016 7 

ICS cyber attack  2015 124 

IEEE 300-bus power test system N/A 171 

Tor-nonTor  2017 18 

URL  2016 7 

MAWI  2011 182 

VPN-nonVPN  2016 49 

Android validation  2014 33 

Android malware  2018 1 

Bot-IoT  2018 2 

CTU-13  2013 244 

ISOT 2008 98 

SSHCure 2014 37 

Table 1 Available public dataset 

Analysis was conducted on these datasets applying the following criteria: 

• Network traffic data including those at routers and links. 

• Completeness of network traffic profile including both benign and abnormal behaviours. 

• Number of times cited. 

• Methods of data collection and preparation. 



 

4 

This project was supported by APINIC foundation. 

NSL-KDD and CIC-IDS2017 datasets were selected to conduct machine learning model designs and 

experiments.  

KDD CUP 1999 is considered benchmark data for assessment of intrusion detection systems. The data includes 

four main categories of attacks that are Denialof-Service (DoS), user-to-root (U2R), Remote to Local Attack 

(R2L) and Probing Attack. Also, there are three content features and thirty-eight numerical features in the 

dataset. The features consist of basic features of individual TCP connections, content features within a 

connection suggested by domain knowledge and traffic features computed using a two-second time window. 

The NSL-KDD dataset is recommended to solve some of the inherent problems of the KDD’99 dataset. 

Compared to the original KDD dataset, the NSL-KDD dataset has the following improvements: (1) it does not 

include redundant records, (2) it does not include duplicate records, (3) the number of selected records is 

organized as the percentage of records, and (4) the number of records is reasonable. 

As NSL-KDD has been heavily used in the studies of machine learning methods, it is used in this project for a 

benchmark comparison. 

The Canadian Institute for Cybersecurity (CIC) conducted a number of projects aiming to overcome the 

shortcomings of previous datasets, aiming to develop a systematic approach to generate diverse and 

comprehensive benchmark dataset for intrusion detection based on the creation of user profiles which contain 

abstract representations of events and behaviours seen on the network. Generating realistic background 

traffic was the top priority in building this dataset. CIC has used the proposed B-Profile system to profile the 

abstract behaviour of human interactions and generates naturalistic benign background traffic. For this 

dataset, the abstract behaviour of 25 users based on the HTTP, HTTPS, FTP, SSH, and email protocols were 

built. CIC-IDS2017 dataset comprises both benign behaviour and also details of new malware attacks: such as 

Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet and DDoS. This dataset is 

labelled based on the timestamp, source and destination IPs, source and destination ports, protocols and 

attacks. A complete network topology was configured to collect this dataset which contains Modem, Firewall, 

Switches, Routers, and nodes with different operating systems (Microsoft Windows (like Windows 10, 

Windows 8, Windows 7, and Windows XP), Apple’s macOS iOS, and open-source operating system Linux). 

The CICFlowMeter tool is used to extract 80 network flow features from the generated network traffic. The 

flows are tagged using the timestamp, the source and destination ports and IP addresses, and protocol types. 

It reproduced comprehensive network traffic conditions and categories of data at both router and application 

level, providing relatively comprehensive network traffic profile for model training. It has been cited 87 times 

in recent research work. By using this dataset, this research work could contribute to the research community 

by adding meaningful reference data and/or lessons for any subsequent research work. 

PROPOSED AI APPROACHES AND MODELS 

There are two major IDS approach classes for building attack detection model: Signature IDS approach and 

Anomaly IDS approach. 

A Signature IDS monitors network traffic to match observed behaviours with attack signatures logged in a 

database. It produces higher detection rates and lower false alarm rates for known attacks than other types, 

but it cannot detect new or even variants of known attacks. This is a significant issue in terms of the computer 

security required to defend against those attacks. Moreover, a huge effort is necessary to repeatedly update 

its database that includes various rules for malicious activities, established by network security experts. To 

address the drawbacks of signature IDS, anomaly IDS approaches have been heavily studied. 
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An Anomaly IDS creates a normal profile and identifies any variations from it as a suspicious event. It can 

identify known and zero-day attacks with less effort to construct its profile than a Signature IDS. Figure 1 

summaries the major categories of anomaly detection approaches. [2] 

Among these categories, both the classification-based shallow learning and deep learning methods have 

shown promising results using existing public datasets. Based on the data analysis outcomes, the following 

methods were selected to produce performance reference and comparison: Random Forest (RF), Support 

Vector Machine (SVM), K Nearest Neighbour (KNN), Multi-Layer Perceptron Neural Network (MLP-NN), Long 

Short-Term Memory Convolutional Neural Network (LSTM-CNN). 

In recent literature, Reinforcement Learning method has been proposed in a few studies to explore how it can 

improve the capability of deep neural network [8]. 

This project designed and experimented an Adversarial Reinforcement Learning (ARL) model to explore its 

ability in detecting emerging attacks. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Anomaly Detection Approach Categories 

PHASE II  DESIGN AND EXPERIMENT VARIOUS MACHINE LEARNING MODELS  

EXPERIMENT ENVIRONMENT: 

The experiments were carried out in a cloud-based environment. Azure pipeline was used to setup DevOp 

environment. The bidirectional traceability is established across requirements, stories, repositories, test cases 

and test results. The environment allows multiple users to access the resources and conduct development 

collaboratively. 

DataOps pipelines were setup to apply various source data ingestion to the process of model training and 

validation. Researchers can choose suitable DataOps pipeline for each experimentation.  
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Experiment processes 

The experiments were carried out through the following steps. 

• Prepared the selected datasets NSL-KDD and CICIDS2017 respectively. 

• Designed the machine learning models applying the selected methods and the respective dataset. 

• Conducted model training and experiments using the prepared data. 

• Designed an Adversarial Reinforcement Learning (ARL) model structure for CIC-IDS2017 dataset. 

• Conducted ARL model training and experiments using the prepared CIC-IDS2017 data. 

• Analysed the anomaly detection and category classification results. 

A typical machine learning model development and experiment process is demonstrated in the diagram below. 

This project applies the same process to conduct the work. 

 

 

 

 

 

 

 

 

Figure 2 Model Training and Experiment Process 

DATASET ANALYSIS AND PREPARATION 

Data preparation is a significant step for machine learning methods. The network data extracted from network 

traffic includes noisy or irrelevant information, missing or duplicated data values, which impact the 

performance of detection model for detecting anomaly. In order to design and architect the models, the 

datasets were carefully analysed so that the characters, the feature structures, and the distribution shapes 

were understood. Suitable data cleansing and processing operations were designed and conducted on the 

selected datasets respectively. 

NSL-KDD Dataset 

Data availability 
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NSL-KDD, which is an updated version of KDD’99 dataset, is downloaded from 

https://www.unb.ca/cic/datasets/nsl.html. 8 files are available in the dataset: 

1. KDDTrain+.ARFF: The full NSL-KDD train set with binary labels in ARFF format 

2. KDDTrain+.TXT: The full NSL-KDD train set including attack-type labels and difficulty level in CSV 

format 

3. KDDTrain+_20Percent.ARFF: A 20% subset of the KDDTrain+.arff file 

4. KDDTrain+_20Percent.TXT: A 20% subset of the KDDTrain+.txt file 

5. KDDTest+.ARFF: The full NSL-KDD test set with binary labels in ARFF format 

6. KDDTest+.TXT: The full NSL-KDD test set including attack-type labels and difficulty level in CSV 

format 

7. KDDTest-21.ARFF: A subset of the KDDTest+.arff file which does not include records with difficulty 

level of 21 out of 21 

8. KDDTest-21.TXT: A subset of the KDDTest+.txt file which does not include records with difficulty 

level of 21 out of 21 

ARFF-formatted files include ‘attribute’ in their header, which are description of columns in the dataset. In this 

analysis, KDDTrain+.ARFF and KDDTest+.ARFF 

1) files are used as training and testing data, respectively. 

Data description 

There are 125,973 training records in the training data and 22,544 testing records in the testing data. In each 

dataset, there are 42 columns, where the last column represents labels (‘normal’/’anomaly’) for the records. 

41 attributes were recorded and their descriptions are listed in Appendix 1. List of all attributes included in 

NSL-KDD data. 

In training data, 67,343 records are labelled ‘normal’ and 58,630 records are ‘anomaly’, which shows it’s a 

well-balanced dataset. In testing data, there are 12,833 ‘normal’ records and 9,711 ‘anomaly’ records. 

Data Preparation 

1. Encoding categorical data: Three columns: ‘protocol_type’, ‘service’ and ‘flag’ are categorical data with 

more than 2 categories in each column. These categories are encoded by One Hot Encoding from Python in 

training data and testing data, respectively. Due to the fact that fewer categories are available in testing data 

for ‘service’ data, columns associated with these 6 missing categories are set to 0 in the testing data. 

Associated original columns are then removed and replaced by these dummy columns. 

2. Normalisation: Histograms of columns with numeric data are illustrated in Figure 3, where it is clear 

that majority data in these columns are 0. In order to minimize the effect of absolute values to classification 

model, training data are normalized to standardized data with mean 0 and standard deviation 1.  

Testing data are normalized based on mean and standard deviation values estimated from original training 

data. 
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Figure 3 Histogram of numeric columns in NSL-KDD training dataset 

CICIDS2017 DATASET 

Data availability and description 

CICIDS 2017 data consists of 8 data files collected from Monday to Friday in a week. In summary, 14 categories 

are included in the data, which are  

• BENIGN: 2,830,743 records,  

• FTP-Patator: 7,938 records 

• SSH-Patator: 5,897 records 

• DoS Hulk: 231,073 records 

• DoS GoldenEye 10,293 records 

• DoS slowloris: 5,796 records 

• DoS Slowhttptest: 5,499 records 

• Heartbleed: 11 records 

• Web Attack Brute Force: 1,507 records 

• Web Attack XSS: 652 records 

• Web Attack Sql Injection: 21 records 

• Infiltration: 36 records 

• Bot: 1,966 records 

• PortScan: 158,930 records  

• DdoS: 128,027 records  

Details of the distributions of these records in each file are listed in the Table 2 below. 
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File Name Category Number of Records 

Monday-WorkingHours.pcap_ISCX.csv 
Benign 529918 

Tuesday-WorkingHours.pcap_ISCX.csv 
Benign 

FTP-Patator 
SSH-Patator 

432074 
7938 
5897 

Wednesday-
WorkingHours.pcap_ISCX.csv 

Benign 
DoS Hulk 

DoS GoldenEye 
DoS slowloris 

DoS Slowhttptest 
Heartbleed 

440031 
231073 
10293 
5796 
5499 

11 

Thursday-WorkingHours-Morning-
WebAttacks.pcap_ISCX.csv 

Benign 
Web Attack  Brute Force 

Web Attack  XSS 
Web Attack  Sql Injection 

168186 
1507 
652 
21 

Thursday-WorkingHours-Afternoon-
Infilteration.pcap_ISCX.csv 

Benign 
Infiltration 

288566 
36 

Friday-WorkingHours-
Morning.pcap_ISCX.csv 

Benign 
Bot 

189067 
1966 

Friday-WorkingHours-Afternoon-
PortScan.pcap_ISCX.csv 

PortScan 
Benign 

158930 
127537 

Friday-WorkingHours-Afternoon-
DDos.pcap_ISCX.csv 

DDoS 
Benign 

128027 
97718 

Table 2 CICIDS2017 data profile 

Data Preparation 

1. Sub dataset selection 

The full CICIDS2017 dataset is very large in size which makes practical model training and testing very difficult. 

In this work, we applied stratified random 

sampling method to extract 20% of the full dataset. However, anomaly categories have a lot less records 

compared with benign data. In particular, some 

categories only have very small number of records. This may cause data imbalance. In order to resolve the 

imbalance to support better learning capability, all 

the records of anomalies were added to produce sub dataset. 

2. Training and Testing data 

Stratified sampling method was used to divide the sub dataset into 80% for training and 20% for testing. 
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3. Handling missing value and columns with zeros 

Two columns ‘Flow Bytes/S’ and ‘Flow Packets/s’ have missing values in them. These values are replaced by 

their means in each group, respectively. Columns 

'Bwd PSH Flags','Bwd URG Flags'. 'Fwd Avg Bytes/Bulk', 'Fwd Avg Packets/Bulk', 'Fwd Avg Bulk Rate', 'Bwd Avg 

Bytes/Bulk','Bwd Avg Packets/Bulk' and 'Bwd 

Avg Bulk Rate' have only 0s in them. They are therefore removed in the preparation step. 

4. Data normalization 

All features were normalized by MinMaxScaler from scikit package in Python. Training data and testing data 

were normalized separately. 

MODEL CONSTRUCTION 

The machine learning models were developed to not only detect anomaly behaviours, but also identify the 

categories of the anomaly behaviours.  

Shallow Learning models 

Random Forest (RF) 

RF is an ensemble method which combines lots of individual decision trees, as illustrated in the Figure 4 below. 

Each individual tree employs some of the features and spits out a class prediction. The class that receives the 

most votes becomes RF model’s final prediction. Two RF models were developed using NSL-KDD and CIC-

IDS2017 datasets respectively. 

 

 

 

 

 

 

 

 

Figure 4 Random Forest Algorithm Steps 

Singular Vector Machine (SVM) 

SVM works by finding out the separating hyperplane which maximizes the margin between two classes. A SVM 

model was developed using NSL-KDD to provide comparison data against RF method. A non-linear soft-margin 

classifier was adopted in this model. 

 

K Nearest Neighbour (KNN) 
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KNN is a non-parametric classification method among which an object is classified by a vote of its K nearest 

neighbours. It is renowned for its classification abilities in high-dimensional problems. Minkowski Distance 

calculation as the formular below was adopted in model construction. A KNN model was developed using CIC-

IDS2017 dataset. 

 

Deep learning models 

Multi-Layer Perceptron Neural Network (MLP-NN) 

MLP-NN is a class of feedforward Artificial Neural Network (ANN). Our models comprise multiple hidden layers 

of nonlinearly-activating neurons. Learning occurs in the neurons by changing connection weights after each 

piece of data is processed, based on the amount of error in the output compared to the expected result. Two 

MLP-NN models were developed using the NSL-KDD and CIC-IDS2017 datasets respectively. 

The diagram Figure 5 illustrates the high-level architecture of a general Artificial Neural Network algorithm. 

Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) 

The CNN-LSTM model developed in this project is composed of a convolution 1d layer (input), a LSTM layer, a 

dropout layer and an output layer. It was trained with NSL-KDD dataset to compare with MLP-NN model. 

 

 

 

 

 

 

 

Figure 5 Artificial Neural Network 

Reinforcement Learning model 

Adversarial Reinforcement Learning (ARL) 

An ARL model was developed which includes a classifier agent and an environment agent, both of which are 

Deep Q Networks (DQN) consisting of MLP-NN models with three hidden layers in the classifier agent and one 

hidden layer in the environment agent. Each hidden layer has 100 neurons in it. An optimal Q-function was 

adopted, which obeys the Bellman optimality equation:  

 

The model works by training both agents at the same time, and iteratively rewards the classifier agent once a 

correct classification is performed. The ARL model was trained and experimented using the CIC-IDS2017 

dataset. 

ARL Model Training 
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During the process of model training, the environment agent used records from CIC-IDS2017 dataset to create 

attacks while the classifier agent was rewarded when it correctly identified the category of an attack. 

 

 

 

 

 

 

 

Figure 6 ARL model training - total reward and loss of two agents 

Figure 6 shows the classifier agent improving its ability to defend the type of attack each successive episode 

while the environment agent becomes more unsuccessful making an attack. The classifier and environment 

agents exhibit expected behaviour of total reward converges to a value. The environment agent used a varied 

type of attacks for each episode. Figure 7 shows the distribution of the attacks across all the categories in each 

episode. The distribution shapes varied throughout the process. 
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Figure 7 Distribution of attacks at different epoch levels 

 

EXPERIMENT RESULTS 

The key objective of the model development and experiments is to explore the suitability and potential of 

Reinforcement Learning method in detecting network emerging attacks. 

The models were trained and tested using traditional machine learning experiment approach.  

Analysis and evaluation metrics 

Parameters 

True positive (TP): number of harmful applications correctly classified. 

True negative (TN): number of benign applications correctly classified. 

False positive (FP): number of benign applications misclassified as harmful. It is regarded as the main drawback 

of classification methods. 

False negative (FN): number of harmful applications misclassified as benign. 

Performance metrics 

Name Description 

Accuracy (ACC) Percentage of correct predictions (positive and negative). 
(TP + TN) / (TP + TN + FP + FN) 

Precision Precision: percentage of correct positives over the total number of positives 
identified. TP / (TP + FP) 

Detection Rate (DR) The detection rates are evaluated using the Area Under the Curve (AUC) of the 

receiver operating characteristics (ROC).  

The detection latency is evaluated by measuring the mean computing time to 

detect whether a data sample is an intrusion. 

DR-attack = TP / (TP + FN) 

Sensitivity 
 

Sensitivity measures the proportion of attack profiles correctly identified. 
TP / (TP + FN) 

Specificity Specificity measures the percent of authentic profiles correctly classified, thus 

providing insight as to the portion of the original authentic profiles that are used for 

prediction.  

F-measures From precision and recall, this parameter measures the accuracy of the method 
2 * {(Precision * Sensitivity) / (Precision + Sensitivity)} 

False Alarm Rate 
(FAR) 
 

False alarms are the benign instances incorrectly classified over the total number of 
benign samples. 
FP / TN + FP 

False Negative and 
Positive 
 

False positives over the total number of positives identified 
FP / TP + FP 
False negative over the total number of positives identified 
FN / FN + TN 

Miss Rate 
 

Harmful instances incorrectly classified over the total number of harmful samples 
FN / (TP + FN) 
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Error Rate 
 

Incorrectly classified instances over the total 
(FP + FN) / (TP + TN + FP +FN) 

This project measures the performance of the developed machine learning models in two scenarios, 1) the 

classification of each anomaly category, 2) the binary detection of anomalies from benign records. The 

measurement was scaled between 0 to 1 when 1 was 100%. 

Detection performance when using NSL-KDD dataset 

The four models designed by Random Forest (RF), Support Vector Machine (SVM), Multi-Layer Perceptron 

Neural Network (MLP-NN), and Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) methods 

respectively were trained and tested using NSL-KDD dataset. 

The key performance metrics were measured against the binary detection and listed in the table below. 

Model Accuracy Precision Specificity Sensitivity F-measure 

RF 0.79 0.97 0.97 0.68 0.80 
SVM 0.79 0.93 0.93 0.69 0.79 

MLP-NN 0.79 0.92 0.92 0.69 0.79 
CNN-LSTM 0.79 0.95 0.95 0.68 0.80 

Table 3 Binary detection performance - NSL-KDD 

The results in this table showed the performance of these four models was very similar to each other, among 

which RF model showed the best overall performance. There are rooms to improve the performance of these 

models. For the purpose of providing benchmark comparison, these measures were sufficient to show the 

effectiveness of these methods. 

Detection results when using CIC-IDS2017 dataset 

The four models designed by Random Forest (RF), K Nearest Neighbour (KNN), Multi-Layer Perceptron Neural 

Network (MLP-NN), and Adversarial Reinforcement Learning (ARL) methods respectively were trained and 

experimented using CIC-IDS2017 dataset. 

The precision and F-measure of the four models classifying the fifteen anomaly categories were measured. The 

results are presented in the following table. 

Category KNN RF MLP-NN ARL Number 

of cases 

 Precision F1-score Precision F1-score Precision F1-score Precision F1-score  

Benign 0.90 0.94 0.99 0.99 0.79 0.87 0.94 0.85 90924 

Bot 0.92 0.73 0.78 0.41 1.00 0.04 0.02 0.04 393 

DDoS 1.00 0.99 1.00 1.00 0.99 0.91 0.91 0.59 25606 

DoS Goldeneye 0.99 0.96 1.00 0.98 0.91 0.33 0.49 0.58 2059 

Dos Hulk 0.99 0.90 1.00 1.00 0.97 0.82 0.69 0.80 46215 

Dos 

SlowHTTPTest 

0.90 0.94 0.99 0.96 0.97 0.12 0.25 0.39 1100 

Dos SlowLoris 0.99 0.94 1.00 0.98 1.00 0.56 0.21 0.29 1159 

FTP-Patator 1.00 1.00 1.00 1.00 0.00 0.00 0.66 0.79 1588 

Heartbleed 1.00 0.67 1.00 0.67 0.00 0.00 0.00 0.00 2 
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Infiltration 0.50 0.22 1.00 0.73 0.00 0.00 0.00 0.00 7 

PortScan 0.97 0.97 1.00 1.00 0.91 0.94 0.93 0.95 31786 

SSH-Patator 1.00 0.68 1.00 1.00 0.00 0.00 0.39 0.43 1180 

Web attack 

Brute force 

0.79 0.59 0.74 0.73 0.00 0.00 0.00 0.00 301 

Web attack SQL 

injection 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4 

Web attack XSS 0.43 0.13 0.26 0.32 0.00 0.00 0.00 0.00 130 

Table 4 Anomaly category classification performance - CIC-IDS2017 

From these results, it is obvious that the Shallow Learning RF and KNN models had better performance while 

the overall performance of all the models was good. 

The binary detection scenarios grouped the data to ‘benign’ and ‘anomaly’ only, where the ‘anomaly’ group 

included all the categories not belonging to the ‘benign’ group. Table 5 illustrates the binary detection 

performance measures of the four models. 

It is clear that RF model had the best performance overall. KNN model also showed strong performance which 

was similar to RF. The performance of both MLP-NN and ARL models under binary scenario was better than 

classifying each category but less desired compared with RF and KNN models. 

Metrics KNN RF MLP-NN ARL 

Accuracy 0.95 1.00 0.87 0.87 

Precision 0.91 0.99 0.79 0.96 

Specificity 0.90 0.99 0.79 0.94 

Sensitivity 0.99 1.00 0.97 0.84 

F-measure 0.95 0.95 0.87 0.89 

Detection Rate 0.99 1.00 0.97 0.84 

False Alarm Rate 0.10 0.01 0.21 0.06 

Miss Rate 0.01 0.00 0.03 0.16 

Error Rate 0.05 0.00 0.13 0.13 

False Positive Rate 0.09 0.01 0.21 0.04 

False Negative Rate 0.01 0.00 0.03 0.23 

Table 5 Binary detection performance CIC-IDS2017 
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Meanwhile, the feature importance was measured when developing the RF model. The following Figure 8 

includes the 20 most important features that RF model considered in its decision-making process. It shows the 

‘Packet Length Variance’ and ‘Packet length Std’ were two most important features. 

Figure 8 Gini feature importance - RF model 

There were two models developed by RF method using two different datasets respectively. The performance 

of these two models is compared in the Table 6 below. 

Dataset Accuracy Precision Specificity Sensitivity F-measure 

NSL-KDD 0.79 0.97 0.97 0.68 0.80 

CIC-IDS2017 1.00 0.99 0.99 1.00 0.95 

Table 6 RF model performance against the two datasets 

There were two models developed by MLP-NN method using two different datasets respectively. The 

performance of these two models is compared in the Table 7 below. 

Dataset Accuracy Precision Specificity Sensitivity F-measure 

NSL-KDD 0.79 0.92 0.92 0.69 0.79 

CIC-IDS2017 0.87 0.96 0.94 0.84 0.89 

Table 7 MLP-NN model performance against the two datasets 

Both RF and MLP-NN models showed obvious variations of performance measures between the two datasets. 

This indicates these machine learning models are sensitive to different data structure. 

PHASE III  EXPERIMENT A NOVEL EVALUATION METHOD ON THE TRAINED MODELS  

EVALUATION APPROACH 

The purpose of the evaluation process conducted in this project beyond the traditional ML model experiment 

processes is to explore an approach which simulates the real environment where a ML model is implemented 
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to detect network-attacks in real-time. So that the evaluation results can indicate the effectiveness of a ML 

model in real-time detection. 

In real environments the network traffic data streams across network components. However, processing 

streaming data in real-time as part of system operation can be expensive at the risks of degrading the system 

performance. The proposed evaluation method assumes the network traffic data and system logs can be 

captured in batches using the similar method as how the CICIDS2017 was constructed [19]. The network traffic 

can be extracted and constructed at a certain interval. 

An evaluation pipeline was established in a cloud-based environment which allows a simulator to send 

continuous batches to pipeline endpoints at a configurable interval. The data flows automatically trigger the 

data preparation processes and execute the trained models. The evaluation pipeline can be deployed in any 

real network environments. Figure 9 demonstrates the concept of the evaluation pipeline. 

Limitation 

 Within the scope of this project, the real-time network traffic is not collected or constructed. A public dataset 

that was produced with relatively comprehensive profile and emerging attacks is to be applied. The continuous 

batch files were generated by applying random sampling method on the adopted public datasets. 

 

 

 

 

 

 

 

Figure 9 AI anomaly detection model evaluation pipeline 

Evaluation Scenario 1 

In order to understand how well ML models works in real environments, this evaluation scenario focuses on 

implementing the trained ML models to detect anomalies in each batch file which has varieties of anomaly 

density and category distribution. 

This evaluation scenario measures the classification and detection performance of the models across 

continuous small network data batches. The results are compared across the batches to observe the 

performance consistency and stability. 

Evaluation Scenario 2 
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This evaluation scenario focuses on the comparison of the robustness of the trained ML models when 

encountering changes or noise in feature space. Ideally, this evaluation could be conducted with real network 

data noise and uncertainties. However, real network data construction is out of the scope of this project. 

The evaluation scenario 2 applied one dataset for training and a different dataset for evaluation. Though this 

approach imposes the risk of causing the ML models ineffective, it may still compare the different robustness 

in various models. 

Evaluation Datasets 

Running anomaly detection models over real labelled network traces with a comprehensive and extensive set 

of intrusions and abnormal behaviour is the most idealistic methodology for testing and evaluation. This itself 

is a significant challenge. As network behaviours and patterns change and intrusions evolve, it has very much 

become necessary to move away from static and one-time datasets towards more dynamically generated 

datasets, which not only reflect the traffic compositions and intrusions of that time, but are also modifiable, 

extensible, and reproducible. Within the scope of this project, we applied CICIDS2017 dataset, which is close to 

realistic network data with zero-attacks, to simulate the realistic network data for evaluation. 

Other than CICIDS2017 dataset, another dataset CES-CICIDS2018 was produced by the same organisation - 

Canadian Institute for Cybersecurity (CIC). This dataset used the notion of profiles to generate datasets in a 

systematic manner, which contains detailed descriptions of intrusions and abstract distribution models for 

applications, protocols, or lower-level network entities. Both the CICIDS2017 and CSE-CICIDS2018 datasets 

include seven different attack scenarios: Brute-force, Heartbleed, Botnet, DoS, DDoS, Web attacks, and 

infiltration of the network from inside. The datasets include the captures network traffic and system logs of 

each machine, along with 80 features extracted from the captured traffic using CICFlowMeter [19]. 

At the first glance, these two datasets have very similar feature structure. However, when we analysed in more 

depth on the constructed data, CESCICIDS2018 dataset has different feature and anomaly distribution shape 

compared with the CICIDS2017 dataset. The detailed analysis of the data extraction and construction 

processes of these two datasets are not included in the scope of this project. 

This project used CICIDS2017 dataset to conduct the evaluation scenario 1, to evaluate the consistency and 

stability of the trained ML models in cloud-based evaluation pipelines processing the randomly sampled batch 

flows. CES-CICIDS2018 dataset was adopted to measure the robustness of the four ML models trained by 

CICIDS2017 dataset to explore the capabilities of these models when facing feature and anomaly changes. 

Evaluation Process 

The steps of experimenting the evaluation method and pipelines were as the following: 

1. Applied random sampling method on CICIDS2017 and CSE-CICIDS2018 data which is outside of the 

model training data to generate the network data batch files. Each batch file contains 20,000 records. 

2. Built a simulator to send the batch network data files at a configurable interval to the evaluation 

pipeline endpoints. 

3. Implemented an evaluation pipeline on the TeleMARS cloud-based platform to automatically 

1. receive the incoming batch flows; 

2. prepare the incoming batch files to get ready to feed the models; and 
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3. execute the trained machine learning models on the prepared data to detect anomalies in 

each batch 

EVALUATION RESULTS 

Performance consistency and stability  

The tables below show the performance measures of classifying anomaly categories over randomly picked 

three batch files, as well as the binary detection performance measures of each model. 

Bath file 1 

Category KNN RF MLP-NN ARL Number 

of cases 

 Precisio

n 

F1-score Precisio

n 

F1-score Precisio

n 

F1-score Precisio

n 

F1-score  

Benign 1.00 0.99 1.00 1.00 1.00 0.99 0.99 0.92 8978 

Bot 0.88 0.92 0.93 0.91 0.84 0.76 0.11 0.19 46 

DDoS 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 2549 

DoS 

Goldeneye 

1.00 1.00 0.99 1.00 1.00 1.00 0.78 0.87 193 

Dos Hulk 1.00 1.00 1.00 1.00 0.99 1.00 0.95 0.96 4560 

Dos 

SlowHTTPTe

st 

0.98 0.99 1.00 1.00 0.98 0.98 0.68 0.80 127 

DOS 

SlowLoris 

0.99 1.00 1.00 1.00 0.97 0.98 0.51 0.67 116 

PortScan 0.96 0.98 1.00 1.00 0.98 0.99 0.94 0.96 3141 

Brute force 0.68 0.75 0.82 0.78 0.78 0.88 0.01 0.02 36 

Web attack 

XSS 

0.30 0.30 0.26 0.29 1.00 0.18 0.10 0.18 10 

Table 8 Classification of each category in batch file 1 

Metrics KNN RF MLP-NN ARL 

Accuracy 0.99 1.00 0.99 0.93 

Precision 1.00 1.00 1.00 0.99 

Specificity 1.00 1.00 1.00 0.90 

Sensitivity 0.99 1.00 0.99 0.90 

F-measure 0.99 1.00 0.99 0.94 

Detection Rate 0.99 1.00 0.99 0.90 

False Alarm Rate 0.00 0.00 0.00 0.01 
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Miss Rate 0.01 0.00 0.01 0.01 

Error Rate 0.01 0.00 0.01 0.07 

False Positive Rate 0.00 0.00 0.00 0.01 

False Negative Rate 0.02 0.00 0.01 0.14 

Table 9 Binary performance measures for batch file 1 

Batch file 2 

Category KNN RF MLP-NN ARL Number 

of cases 

 Precisio

n 

F1-score Precisio

n 

F1-score Precisio

n 

F1-score Precisio

n 

F1-score  

Benign 1.00 0.99 1.00 1.00 1.00 0.99 0.99 0.92 9007 

Bot 0.97 0.93 1.00 0.94 1.00 0.85 0.08 0.15 38 

DDoS 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 2500 

DoS 

Goldeneye 

0.99 0.99 1.00 1.00 0.99 0.99 0.82 0.89 216 

Dos Hulk 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.96 4530 

Dos 

SlowHTTPTe

st 

1.00 1.00 1.00 1.00 0.99 0.99 0.74 0.84 124 

DOS 

SlowLoris 

0.99 1.00 1.00 1.00 0.98 0.98 0.57 0.72 127 

Infiltration 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 

PortScan 0.97 0.98 1.00 1.00 0.98 0.99 0.94 0.96 3136 

Brute force 0.57 0.67 0.77 0.78 0.63 0.77 0.07 0.1 34 

SQL 

injection 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 

Web attack 

XSS 

0.21 0.19 0.53 0.50 0.0 0.0 0.16 0.28 17 

Table 10 Classification of each category in batch file 2 

Metrics KNN RF MLP-NN ARL 

Accuracy 0.99 1.00 1.00 0.93 

Precision 1.00 1.00 1.00 0.99 

Specificity 1.00 1.00 1.00 0.99 

Sensitivity 0.99 1.00 0.99 0.90 

F-measure 0.99 1.00 1.00 0.94 

Detection Rate 0.99 1.00 0.99 0.90 
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False Alarm Rate 0.00 0.00 0.00 0.01 

Miss Rate 0.01 0.00 0.01 0.10 

Error Rate 0.01 0.00 0.00 0.07 

False Positive Rate 0.00 0.00 0.00 0.01 

False Negative Rate 0.01 0.00 0.01 0.13 

Table 11 Binary performance measures for batch file 2 

Batch file 3 

Category KNN RF MLP-NN ARL Number 

of cases 

 Precisio

n 

F1-score Precisio

n 

F1-score Precisio

n 

F1-score Precisio

n 

F1-score  

Benign 1.00 0.99 1.00 1.00 1.00 0.99 0.99 0.92 8929 

Bot 0.86 0.91 0.91 0.93 0.85 0.77 0.08 0.15 32 

DDoS 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 2556 

DoS 

Goldeneye 

0.98 0.99 0.99 0.99 1.00 0.99 0.76 0.86 218 

Dos Hulk 1.00 1.00 1.00 1.00 0.99 1.00 0.96 0.96 4589 

Dos 

SlowHTTPTe

st 

0.99 1.00 0.98 0.99 1.00 1.00 0.73 0.83 106 

DOS 

SlowLoris 

0.99 0.97 0.99 0.98 0.97 0.97 0.55 0.69 117 

PortScan 0.96 0.98 1.00 1.00 0.98 0.99 0.93 0.96 3148 

Brute force 0.75 0.81 0.78 0.72 0.78 0.87 0.04 0.06 37 

Web attack 

XSS 

0.27 0.30 0.14 0.17 0.0 0.0 0.10 0.18 9 

Table 12 Classification of each category in batch file 3 

Metrics KNN RF MLP-NN ARL 

Accuracy 0.99 1.00 0.99 0.93 

Precision 1.00 1.00 1.00 0.99 

Specificity 1.00 1.00 1.00 0.99 

Sensitivity 0.99 1.00 0.99 0.90 

F-measure 0.99 1.00 0.99 0.94 

Detection Rate 0.99 1.00 0.99 0.90 

False Alarm Rate 0.00 0.00 0.00 0.01 

Miss Rate 0.01 0.00 0.01 0.10 
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Error Rate 0.01 0.00 0.01 0.07 

False Positive Rate 0.00 0.00 0.00 0.01 

False Negative Rate 0.02 0.00 0.01 0.14 

Table 13 Binary performance measures for batch file 3 

Processing time 

The table below records the pipeline data preparation time and model processing time of running a model on 

a single batch file. The results are compared among the four models over four randomly picked batches. 

Model Batch file no. Pipeline data preparation 

duration (mm:ss) 

Model processing duration 

(mm:ss) 

RF 1 00:26 00:01 

KNN 1 00:17 08:55 

MPL-NN 1 00:19 00:02 

ARL 1 00:17 00:02 

RF 2 00:18 00:01 

KNN 2 00:32 08:33 

MPL-NN 2 00:42 00:01 

ARL 2 00:16 00:02 

RF 3 00:20 00:01 

KNN 3 00:17 08:33 

MPL-NN 3 00:22 00:01 

ARL 3 00:27 00:02 

RF 4 00:27 00:01 

KNN 4 00:18 08:18 

MPL-NN 4 00:30 00:01 

ARL 4 00:43 00:01 

Table 14 Evaluation processing time 

Robustness of the ML models 

The table below compares the binary detection performance across the four models when sending the batch 

files generated from CES-CICIDS2018 data through the evaluation pipeline. 

Metrics KNN RF MLP-NN ARL 

Accuracy 0.53 0.35 0.64 0.60 

Precision 0.38 0.14 0.53 0.57 

Specificity 0.35 0.28 0.43 0.36 

Sensitivity 0.94 0.84 0.98 0.83 

F-measure 0.54 0.24 0.68 0.67 

Detection Rate 0.94 0.84 0.98 0.83 

False Alarm Rate 0.65 0.72 0.57 0.64 
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Miss Rate 0.06 0.16 0.02 0.17 

Error Rate 0.47 0.65 0.36 0.40 

False Positive Rate 0.63 0.86 0.47 0.43 

False Negative Rate 0.07 0.07 0.03 0.32 

Table 15 Binary detection performance measures for batch file from CES-CIC-IDS2018 data 

FINDINGS 

OBSERVATION SUMMARY 

The performance metrics of RF and MLP-NN models against the two datasets were compared in "Table 6 RF 

model performance against the two datasets" and "Table 7 MLP-NN model performance against the two 

datasets". There are obvious variations of performance measures between the two datasets while the overall 

performance of anomaly detection is good. 

The binary detection performance results recorded in "Table 3 Binary detection performance - NSL-KDD" and 

"Table 5 Binary detection performance - CICIDS2017" showed that the Shallow Learning models such as RF and 

KNN performed stronger than the MLP-NN and ARL models. RF model had the best overall performance in all 

the experiments. 

The results of the anomaly category classification performance in "Table 4 Anomaly category classification 

performance" showed the Shallow Learning RF and KNN models were more effective in classifying the anomaly 

categories with small number of records. 

The evaluation results recorded in the tables from Table 8 to Table 13 were consistent cross three randomly 

selected batch files. There were insignificant fluctuations in the results of classification of a couple of 

categories which have small number of records. This is expected behaviour of ML models. The results of binary 

detection performance were highly consistent. 

Table 15 shows the models trained with CICIDS2017 data performed poorly in detecting the anomalies in CES-

CIC-IDS2018 data. MPL-NN model had better overall performance. 

FINDINGS 

1. The Shallow Learning RF model showed the best overall performance in detecting emerging attacks 

using traditional machine learning experiment approach, in particular stronger in classifying the 

anomaly categories that have only small number of records. KNN model shows similar strong 

capabilities. 

2. The Reinforcement Learning ARL model had good performance but did not show any advantage over 

other models. However, there are rooms for Deep Learning and Reinforcement Learning models to 

improve their prediction accuracy and detection sensitivity. Neural Network architecture could be further 

adapted by modifying the layers, the number of neurons or hyperparameters in each layer, and the 

dependencies between the neurons and the layers. The architecture reconstruction has chance to lead to 

the improvements of anomaly detection performance. 
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3. The differences of performance between the model experiments using NSL-KDD dataset and CIC-

IDS2017 dataset respectively showed that ML models are sensitive to data structure. 

4. The evaluation results proved the detection performance of the ML models stay consistent and stable 

when data volume, anomaly density and category distribution change. 

5. The evaluation method and the pipelines can be applied to support future real-time detection research. 

6. The RF, MPL-NN and ARL models were highly efficient in execution time and resource balance when 

processing small batch files. However, KNN consumed a lot larger resource and took significantly longer 

processing time. This indicates the implementation of KNN models in real network environment may be 

expensive. 

7. When the testing data feature space is different from the training dataset, ML models do not perform 

well in general. So that the ML methods are not effective in this kind of situations. 

8. The MPL-NN model showed relatively better robustness in overall detection performance. This indicates 

that Neural Network method which is regression based is more resilient in dealing with changes in feature 

space. This method could be adopted to add robustness into anomaly detection models in real network 

environment. 

LESSONS LEARNT AND DISCUSSIONS 

The organisations who might benefit from the findings and the lessons learnt include universities, research 

institutions, network operators, internet or cloud service providers, the organisations or businesses operating 

in cybersecurity domain. The findings of this project can be used by these organisations to determine their 

research plan, design research projects, assess cybersecurity solutions, or determine their technology 

transformation strategy. 

Lessons Learnt 

• During the process of the project implementation, we have learnt that the strong collaboration 

between the subject matter experts and data scientists is critical to develop effective and practical AI-

based solutions. In the domain of cybersecurity, it is important that cybersecurity experts, network 

engineers and data scientists work closely together. 

• It is worth spending more time on data analysis at all levels including physical layer, raw digital data, 

processed data, and data in constructed feature space to make sure the structure and characters of 

data is fully understood. This is critical for ML model development. 

• It is also important to control the quality of each step of data processing which impacts the quality of 

the models. 

Next step research problems 

This research has proved that the Shallow Learning classification methods are highly effective in anomaly 

detection using the traditional machine learning experiment approach. The insignificant variations among the 

performance measures do not indicate the anomaly detection effectiveness in real network environment. 

Further performance improvement using traditional machine learning experiment approach is not the focus of 

future research effort. Instead, the real-time detection should be studied on multiple aspects. The real-time 

detection related problems include the following: 
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• training data construction for a specific network environment; 

• improvement of the robustness of anomaly detection model; 

• dynamic evaluation mechanism; 

• dynamic model training, improvement and deployment; and 

• lightweight model architecture. 

Challenges 

However, there are a number of challenges in this process. 

1. Firstly, the training data construction requires significant effort from subject matter experts such as 

cybersecurity engineers and network engineers to work on detailed data analysis to capture and identify 

comprehensive network behaviours. The subject matter experts need to work closely with data scientists to 

work out the best way to structure data.  

2. Extracting and constructing raw network data into the defined structure in real-time may increase risks in 

operation performance. 

3. The constructed real-time network data will still contain some noise. This requires the ML anomaly 

detection models to be more robust to remain effective in real environments. 

4. The network user behaviours and applications are growing and changing rapidly. 

5. The network topology and architecture may change overtime. This may introduce significant changes in 

network data profile. 

6. The cyber-attacks are continuously evolving. A mechanism that promptly identifies any emerging attacks is 

to be part of the detection strategy to ensure the ML models are up-to-date. 

Based on what we have learnt through this project, TeleMARS will establish collaboration with research 

partners to continue the research in real-time anomaly detection to develop solutions that is practical in real 

network environment. 
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APPENDIX 

APPENDIX 1. LIST OF ALL ATTRIBUTES INCLUDED IN NSL -KDD DATA 

Attribute No Attribute Name Description Sample Data 

1 Duration Length of time duration of the connection 0 

2 Protocol_type Protocol used in the connection Tcp 

3 Service Destination network service used ftp_data 

4 Flag Status of the connection –Normal or Error SF 

5 Src_bytes Number of data bytes transferred from source to 

destination in single connection 

491 

6 Dst_bytes Number of data bytes transferred from 

destination to source in single connection 

0 

7 Land if source and destination IP addresses and port 

numbers are equal then this variable takes value 

1 else 0 

0 

https://www.unb.ca/cic/datasets/
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8 Wrong_fragment Total number of wrong fragments in this 

connection 

0 

9 Urgent Number of urgent packets in this connection. 

Urgent packets are packets with the urgent bit 

activated 

0 

10 Hot Number of “hot‟ indicators in the content such 

as: entering a system 

0 

11 Num_failed_logins Count of failed login attempts 0 

12 Logged_in Login Status : 1 if successfully logged in; 0 

otherwise 

0 

13 Num_compromised Number of ‘’compromised'' conditions 0 

14 Root_shell 1 if root shell is obtained; 0 otherwise 0 

15 Su_attempted 1 if ``su root'' command attempted or used; 0 

otherwise 

0 

16 Num_root Number of ``root'' accesses or number of 

operations performed as a root in the connection 

0 

17 Num_file_creations Number of file creation operations in the 

connection  

0 

18 Num_shells Number of shell prompts 0 

19 Num_access_files Number of operations on access control files 0 

20 Num_outbound_cmds Numberof outbound commands in an ftp session 0 

21 Is_hot_login 1 if the login belongs to the ``hot'' list i.e. root or admin; 

else 0 

22 Is_guest_login 1 if the login is a ``guest'' login; 0 otherwise 0 

23 Count Number of connections to the same destination 

host as the current connection in the past two 

2 

24 Srv_count Number of connections to the same service (port 

number) as the current connection in the past 

two seconds 

2 

25 Serror_rate The percentage of connections that have 

activated the flag (4) s0 s1 s2 or s3 among the 

connections aggregated in count (23) 

0 

26 Srv_serror_rate The percentage of connections that have 

activated the flag (4) s0 s1 s2 or s3 among the 

connections aggregated in srv_count (24) 

0 

27 Rerror_rate The percentage of connections that have 

activated the flag (4) REJ among the connections 

aggregated in count (23) 

0 
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28 Srv_rerror_rate The percentage of connections that have 

activated the flag (4) REJ among the connections 

aggregated in srv_count (24) 

0 

29 Same_srv_rate The percentage of connections that were to the 

same service among the connections aggregated 

in count (23) 

1 

30 Diff_srv_rate The percentage of connections that were to 

different services among the connections 

aggregated in count (23) 

0 

31 Srv_diff_host_rate The percentage of connections that were to 

different destination machines among the 

connections aggregated in srv_count (24) 

0 

32 Dst_host_count Number of connections having the same 

destination host IP address 

150 

33 Dst_host_srv_count Number of connections having the same port 

number 

25 

34 Dst_host_same_srv_rat

e 

The percentage of connections that were to the 

same service among the connections aggregated 

in dst_host_count (32) 

0.17 

35 Dst_host_diff_srv_rate The percentage of connections that were to 

different services among the connections 

aggregated in dst_host_count (32) 

0.03 

36 Dst_host_same_src_por

t_rate 

The percentage of connections that were to the 

same source port among the connections 

aggregated in dst_host_srv_count (33) 

0.17 

37 Dst_host_srv_diff_host

_rate 

The percentage of connections that were to 

different destination machines among the 

connections aggregated in 

dst_host_srv_count(33) 

0 

38 Dst_host_serror_rate The percentage of connections that have 

activated the flag (4) s0 s1 s2 or s3 among the 

connections aggregated in dst_host_count (32) 

0 

39 Dst_host_srv_serror_ra

te 

The percent of connections that have activated 

the flag (4) s0 s1 s2 or s3 among the connections 

aggregated in dst_host_srv_count (33) 

0 

40 Dst_host_rerror_rate The percentage of connections that have 

activated the flag (4) REJ among the connections 

aggregated in dst_host_count (32) 

0.05 

 


